SHORT REPORTS

Cardiopulmonary resuscitation following profound immersion hypothermia

David J Steedman, Timothy Rainer, Ciro Campanella

Abstract
A case is presented in which prolonged resuscitation and rewarming was performed following post-rescue cardiopulmonary arrest in severe immersion hypothermia. The rescue and resuscitation techniques necessary to optimise outcome in such cases are described.

Keywords: immersion hypothermia; resuscitation

During the period of severely cold weather in the United Kingdom during the winter of 1995, the media reported on a series of tragedies from cold water immersion following falls through ice, and the heroic measures of bystanders and the emergency services to save life in these incidents. A case in which prolonged resuscitation and rewarming was performed following post-rescue cardiopulmonary arrest in severe immersion hypothermia is presented. The patient survived without neurological deficit following three and a half hours of cardiopulmonary resuscitation.

Case report
A 29 year old man fell through the ice covering of a fresh water reservoir at 14.45 hours while attempting to rescue his dog. The ambient air temperature was -2°C at the time of the incident. His face did not submerge. Several bystanders were unable to reach him because the ice broke under their feet. After a hazardous operation he was eventually rescued by Fire Service personnel and transferred by stretcher to an awaiting ambulance at 16.05 hours. He was opening his eyes spontaneously and localising painful stimuli but gave no verbal response (Glasgow coma score 10/15). His pupils were equal and reactive to light. His wet clothes were carefully removed and he was wrapped in a space blanket. He was started on oxygen 6 litres/min through a face mask. The ambulance left the scene at 16.14 hours.

On route to hospital at 16.23 hours he became unresponsive and had no detectable cardiac output. The ECG monitor trace showed ventricular fibrillation. A sequence of 200 J, 200 J, and 360 J dc shocks was unsuccessful. Manual external chest compressions with intermittent positive pressure ventilation by bag-mask was immediately started. On arrival at the accident and emergency department at 16.29 hours his clinical state was unchanged, with persisting ventricular fibrillation on the ECG monitor.

Advanced cardiopulmonary support was begun, with endotracheal intubation, intermittent positive pressure ventilation with 100% oxygen, and external chest compression using a Michigan Instrument Life Aid Resuscitator (Thumper). A rectal probe thermometer reading was 28.3°C. A peripheral intravenous line was established and 500 ml normal saline, warmed by a Level 1 System fluid warmer, was given.

Initial arterial blood gas measurements showed H+ 78.9 mmol/l, Pco₂ 1.56 kPa, bicarbonate 3.7 mmol/l, and Po₂ 77.3 kPa. His urea concentration was 8.9 mmol/l, creatinine 232 mmol/l, sodium 146 mmol/l, potassium 6.1 mmol/l, and glucose 6.7 mmol/l. A nasogastric and a urinary catheter were passed. Two peritoneal dialysis catheters and two left chest tubes were inserted and continuous pleural and peritoneal lavage performed with warmed saline. His rectal temperature had risen to 29.1°C at 17.00 hours. He remained in ventricular fibrillation resistant to further dc shocks.

He was transferred to the cardiothoracic theatre at 17.25 hours. Cardiopulmonary bypass was established at 18.46 hours; one hour and 15 minutes were spent in theatre trying to cannulate the femoral vessels in the hope of being able to establish cardiopulmonary bypass without opening the chest and therefore disconnecting the patient from the thumper. It was assessed that the thumper was producing a pulsatile flow easily palpable at the femoral site. Cannulation proved extremely difficult due to a combination of vasospasm and small sized femoral artery and vein. The attempt was abandoned and attention concentrated on the chest. The total time between stopping the thumper and placing the patient on cardiopulmonary bypass using aortic and right atrial cannulation was two minutes and 45 seconds. During that time, the heart was internally massaged by the first surgeon while the assistant was placing the purse string sutures onto the ascending aorta and right atrium and
proceeding towards cannulation. In half an hour of full flow, the temperature was raised from 25°C to 31°C. At 19.00 hours, three internal dc shocks at 20 J, 20 J, and 40 J were delivered, with no response. At 19.12 hours defibrillation was successful after one further 20 J dc shock, when core temperature had risen to 37.0°C. The ECG monitor showed sinus tachycardia with frequent ventricular ectopic beats. He was disconnected from bypass at 19.54 hours. He was transferred from theatre to the intensive care unit at 21.35 hours on inotropic support. In intensive care he was ventilated for 72 hours, requiring infusions of adrenaline, noradrenaline, dopamine, and lignocaine.

Discussion

Immersion in cold water can cool the core body temperature much more rapidly than exposure to cold air because the thermal conductivity of water is 25 times greater than that of air. The cooler the water the faster the cooling rate. As core body temperature declines, the basal metabolic rate and oxygen consumption fall gradually but progressively. There is a linear decrease in cerebral metabolism of 6–7% per °C between core temperatures of 35°C to 25°C. Immersion hypothermia provides substantial protection to the central nervous system from hypoxia. With a significant drop in core temperature the immersion hypothermic casualty may appear clinically dead (without palpable pulse, blood pressure, or respiration), but may still be successfully resuscitated with little or no neurological deficit. Full recovery has occurred in a patient with an initial core temperature of 15.2°C. The only certain diagnosis of death is failure to recover on rewarming. The diagnosis of death should be made in hospital unless conditions render prolonged attempts at resuscitation or evacuation impossible.

Hypothermic casualties, as in the case illustrated, are at risk of death even though they are alive when rescued. After the casualty has been removed from cold water the core temperature may continue to fall, even paradoxically during the early stages of rewarming. This phenomenon of “after drop” is caused by the continued conduction of heat down a thermal gradient from the relatively warm core to the colder peripheral shell. As the heart cools it becomes more susceptible to mechanical irritation which may trigger ventricular fibrillation. Postulated mechanisms for hypothermia induced cardiac irritability include re-entry conduction producing circus movement, and the development of independent electrical foci.

Cold water immersion may lead to loss of the normal cardiovascular reflexes which, together with the sudden reduction in the hydrostatic squeeze to tissues below the water surface, may precipitate severe hypotension on removal from the water. Rescuers should attempt to retrieve the casualty horizontally from the water. If the patient cannot be removed horizontally, this position should be achieved as quickly as possible after removal from the cold water. Conscious patients should not be required to assist in their own rescue, as physical activity increases the after drop in core temperature by increasing perfusion of cold muscle with relatively warm blood, and also increases demands on the cold ischaemic heart.

Following rescue further heat loss should be prevented by insulating the body surface. Until the casualty is indoors, wet clothes should not be removed, but layers of insulating material should be put on top of the clothing and covered with a layer that is water and windproof; the head must be included, and insulation should be provided between the body and the ground. Space blankets, although often recommended, are no better than a similar thickness of polythene. Once the victim is in warm shelter and out of the wind, wet clothing should be removed if sufficient rescuers are available to do this with minimal movement of the casualty.

Palpation of peripheral pulses is difficult in hypothermic vasoconstricted patients when the cardiac rate is extremely slow. The carotid or femoral pulse should be careful palpated for at least one minute. The low cardiac output may be sufficient to meet the metabolic demands in these patients and ventricular fibrillation can be precipitated by unnecessary external chest compressions. In hypothermic victims chest compression should be performed at the same rate as in normothermic patients, despite changes in the compressibility of the heart and compliance, but they may still be unresponsive.

Oxygen should be given to profound hypothermic casualties when available. Care should be taken not to leave the oxygen cylinder lying on cold ground or in snow. Changing a patient from warm expired air resuscitation to assisted ventilation with oxygen from a cold cylinder can precipitate ventricular fibrillation. Tracheal intubation should be performed gently and preoxygenation will decrease the risk of precipitating ventricular fibrillation. Intravenous access may be extremely difficult to achieve in the field because of the intense peripheral vasoconstriction. Most drugs are ineffective in hypothermic patients or are dangerous to use because of increased cardiac irritability. Toxic levels may develop since drug metabolism by the hypothermic liver and kidneys is reduced.

If ventricular fibrillation is detected, emergency personnel should deliver three shocks to determine fibrillation responsiveness. If ventricular fibrillation persists after three shocks, further shocks should be avoided. Attempts at defibrillation are usually unsuccessful until the core temperature is above 30°C. Prolonged field treatment should be avoided.

There are three techniques of rewarming: spontaneous, active external, and active internal. Spontaneous rewarming is achieved by insulating the patient with an appropriate material, thereby preventing further heat loss and allowing the body to re-warm through endogenously generated metabolic heat. Active rewarming is indicated when endogenous thermogenesis is insufficient to produce an
adequate rate of rewarming following insula-
tion. Active external rewarming using a hot
bath, plumbed garments, hot water bottles,
and heat pads and blankets applied to the
trunk have been advocated in victims of
immersion hypothermia with a palpable pulse.
Active rewarming is usually required when
the core temperature is below 32°C. Cardio-
vascular collapse associated with sudden periph-
eral vasodilatation is a potential complica-
tion of these techniques, and careful monitoring is
essential. Resuscitation is impossible in a hot
water bath.

Patients in cardiorespiratory arrest require
rapid temperature elevation using active inter-
nal rewarming techniques. Options include
peritoneal and pleural lavage, heated humid-
ified oxygen, and mediastinal irrigation and
direct myocardial lavage. Intravenous fluids
should be warmed; however, the risk of fluid
overload precipitating pulmonary oedema
limits their use as a means of rewarming. The
use of Ringer's lactate solution should be
avoided because hepatic metabolism of lactate
is reduced in hypothermia. Administration of
heated fluids through a central venous cannula
can produce myocardial thermal gradients and
precipitate arrhythmias.

Extracorporeal circulation is the treatment of
choice in hypothermic cardiac arrest. The
main advantage of rewarming by cardio-
pulmonary bypass is the preservation of blood
flow to the brain and other vital organs and
rapid core temperature elevation of 1-2°C
every three to five minutes. However, cardio-
pulmonary bypass can only be performed by
an experienced team and when the equipment is
available. Consequently cardiopulmonary
bypass in practice is usually instituted after
other active internal rewarming methods have
been started.

The longest reported conventional cardio-
pulmonary resuscitation in a hypothermic
victim followed by survival is six hours 30 min-
utes. Although the aphorism "No one is dead
until warm and dead" is generally applicable,
rewarming to near normal core temperature is
not practicable in every case. Rewarming
efforts should probably be continued until the
core temperature is at least 32°C and may be
discontinued if the patient continues to show
no effective cardiac rhythm and remains totally
unresponsive to all treatments. However, the
decision to terminate resuscitation must take
into account the circumstances of each incident.

Resuscitation of the patient was achieved
through a joint effort, and the participation of
physicians, nurses, technicians, and members of
the emergency services who assisted is
gratefully acknowledged.

Sixth cranial nerve palsy following closed head
injury in a child

G J Hollis

Department of
Emergency Medicine,
St George Hospital,
Kogarah, NSW 2217,
Australia
G J Hollis

Correspondence to:
Dr G J Hollis, Registrar,
Department of Emergency
Medicine.

Accepted for publication
6 February 1997

Abstract
A five year old female had an isolated
abducens nerve palsy following closed
head injury. There was no associated skull
fracture, haematoma, or other cranial
nerve injury. The significance, frequency,
and differential diagnosis of traumatic
sixth cranial nerve injury is discussed,
particularly in paediatric patients.
Management is symptomatic; occlusion
with an eye pad may be used if diplopia is
significant. In young children alternate
Cardiopulmonary resuscitation following profound immersion hypothermia.

D J Steedman, T Rainer and C Campanella

doi: 10.1136/emj.14.3.170

Updated information and services can be found at:
http://emj.bmj.com/content/14/3/170

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/