LETTERS TO THE EDITOR

Resuscitation from hypothermia

EDITOR,—The three cases of accidental hypothermia successfully resuscitated without neurological deficit using cardiopulmonary bypass reported by Ireland et al provide a timely reminder that circulatory collapse in severe hypothermia must be treated with active rewarming (by whatever technique). Such patients, however, also require appropriate supportive critical care. In two of the patients reported, ventilatory support appears to have been inappropriate or delayed.

In case 2, the patient was successfully resuscitated from a VE arrest but then left self ventilating through a T-piece in spite of an unstable cardiac rhythm, severe hypothermia, and presumably acidosis and hypoxaemia. This is likely to be unsatisfactory both in terms of missing 99% of the opportunity to centrally warm using warmed humidified gases via a ventilator and in providing increased respiratory work (caused by the resistance of the tube and loss of intrinsic PEEF). Low volume ventilation with warmed 100% oxygen would have ensured better oxygen delivery and reduced respiratory muscle oxygen consumption, and would have contributed to the rewarming process.

In case 3, a patient with severe hypothermia, a GCS of 6/15 and “poor respiratory effort” was treated with high flow oxygen until some time after admission, when he developed an unrecordable blood pressure, bradycardia, and anuria, upon which he was intubated and ventilated. Many critical care authorities now recommend that hypothermic patients with a decreased conscious level and impaired airway reflexes or inadequate gas exchange require early intubation and ventilation.1 This patient would have benefited from ventilatory support with warmed humidified oxygen from the time of arrival in the A&E department.

Cardiopulmonary bypass may have a place as a means of active rewarming where available, when other methods have failed, and in the presence of severe circulatory disturbance. Such highly complex techniques should not, however, detract from a basic ABC approach to resuscitation, and adequate ventilatory support should not be neglected in the haste to restore an adequate circulation and rewarm the patient if late deaths from multiple organ failure are to be minimised.

TIMOTHY R J PARKE
Accident and Emergency Department, Southern General Hospital, Glasgow


Vivek L Pathi
Rudy Crawford
Ian W Colquhoun
Departments of Accident and Emergency Medicine and Cardiothoracic Surgery, Royal Infirmary, Glasgow

Treatment of focal status epilepticus with lignocaine

EDITOR,—I read with interest the letter by Kato et al.1

When working at Murgwanza Hospital in Tanzania in 1998, I had a very similar experience to the one described by Kato et al. I had presented with focal status epilepticus which failed to respond to intravenous diazepam and phenytoin but instantly responded to a bolus of 100 mg of lignocaine and remained well with a lignocaine infusion over the next 24 hours. The same patient presented again in the same way several months later. However, on the second occasion he failed to respond to intravenous lignocaine and his fits persisted for more than a week. Consequently, I am doubtful that lignocaine is the drug of choice in the treatment of status epilepticus with focal seizures.

DAVID EMERTON
Accident and Emergency Department, North Tees General Hospital, Stockton on Tees, Cleveland


Alcohol intoxication in a toddler

EDITOR,—We have recently had an interesting case of alcohol intoxication. The patient was an 18 month old girl. She was playing in her bedroom and took a 200 ml bottle of paracetamol elixir from the top of a bookcase high in her room. This had been dispensed some months earlier and was not fitted with a childproof cap. Her mother found her playing with the open bottle. Most of the contents had gone from the bottle but there was a significant amount on the child’s clothes. Her mother brought her immediately to hospital and on the way she started to become very sleepy. On arrival in accident and emergency she was pale and flaccid with a Glasgow coma scale of 3/15. She had vomited but was maintaining her airway. She had a blood pressure of 80/60, a pulse of 96/min, and a respiratory rate of 20/min. Her oxygen saturation was 99% on 100% oxygen by face mask. The initial serum potassium was 2.5 mmol/l and the blood glucose was 2.4 mmol/l. Her plasma urea and electrolytes were otherwise normal. Blood gases showed: pH 7.356, Pco2 2.15 kPa, Po2 24.80 kPa, HCO3 8.8 mmol/l, oxygen saturation 95%. The blood alcohol concentration was 1.1 mmol/l at 4 h post ingestion.

Traditionally, paediatric paracetamol elixir (British Pharmacopoeia, 1980) is formulated to provide 120 mg of paracetamol in 5 ml. This mixture also contains 10% (by volume) of 96% ethanol. Although many proprietary liquid paracetamol formulations contain no alcohol, the British Pharmacopoeia formulation is still sometimes dispensed from pharmacies.

Serum alcohol was not measured but serum osmolality was 350 mmol/kg. Using an algorithm,1 the ethanol concentration can be...
calculated from the osmolar gap. Calculated serum osmolality was 290 mmol/kg. Therefore there was a 60 mmol/kg gap, which was compatible with 187 mg/dl of ethyl alcohol (over two times the upper limit of adults for driving). She was initially treated with acetylcysteine and intravenous fluids, including potassium in view of her hypokalaemia. Acetylcysteine was stopped after four hours and the child gradually recovered through the day.

The following day she was running around the ward. The urea, electrolytes, liver function tests and clotting profile were normal and she was discharged.

Accidental overdose of medications in toddlers is not uncommon and we think it is important for A&E staff to be aware that some paediatric formulations do contain alcohol. If it were known that alcohol was present in an accidentally ingested medicine, the reason for a baby being drowsy after apparently swallowing only an elixir would be much more obvious.

We consider it to be bad practice to supply paracetamol as an alcoholic elixir, as it is possible to formulate paracetamol as a suspension; 100 ml of paracetamol elixir has the equivalent alcohol content to 234 ml lager (4.1% vol/vol alcohol), which is rather a lot for a 12 kg baby.

C TOVEY
A&E Department, Conquest Hospital, St Leonards on Sea, East Sussex
P S J B RANA
A&E Department, St Peter's Hospital, Chertsey, Surrey
D J ANDERSON
Pharmacy Department, St Peter's Hospital, Chertsey, Surrey


More alcohol

EDITOR,—A previously well two year old girl attended the accident and emergency department having collapsed at home. It was believed that she had ingested 10–30 ml of mouthwash, after which she had staggered and collapsed.

On examination the Glasgow coma scale was 7. Blood glucose was 0.4 mmol/l. Following intravenous dextrose, her GCS rose to 15.

The mouthwash was found to contain 22% alcohol. The child’s blood alcohol level was 94 mg/dl which, following overnight fast, was considered to account for the hypoglycaemia. Mouthwash is available over the counter and usually placed on the bathroom shelf, often within reach of children. Parents are aware of the dangers of alcohol but lack knowledge of the alcohol content of mouthwashes. In 1985 a four year old previously healthy boy, whose admission was delayed, died as a result of hypoglycaemia from accidental alcohol poisoning after consuming half a bottle of mouthwash.1,2

The Proprietary Association of Great Britain ensures that all licensed medicinal mouthwashes contain less than 5% alcohol content. Mouthwashes generally contain 10–25% alcohol, more than spirits or wine, and can be sold unlicensed as they are classified as cosmetics. I recommend that these products be sold under a licence restricting the alcohol concentration to less than 5%. The bottle should have child resistant caps and warning labels to prevent further childhood catastrophes.

Z DENNING
Accident and Emergency Department, Royal Hampshire County Hospital, Winchester


Intrasos for ankle injuries

EDITOR,—Dancocks et al advocate the use of intrasos in the diagnosis of ankle fractures with a view to reducing the number of x rays taken. They quite rightly conclude that on the basis of their data the technique cannot be relied upon on its own. The predictive value of the test (not mentioned in the paper) is 19.8%.

The authors state that by identifying those patients with a negative response, the algorithm would have reduced the number of ankles x rayed. In the sample group mentioned, there were only 20 ankle fractures identified. The authors mention that only one clinically significant fracture would have been missed. It is stated that the initial management of the patient in question would have been unchanged. However, if such an error is occurring in this small sample size then there is the potential for many more errors. We are an average sized district general A&E department seeing 55 000 patients a year. We diagnose fractures in approximately 250 “un-deformed” ankles every year. If we were to miss one in 20, we would be missing in excess of 12 fractures a year using the proposed algorithm.

The question posed is a valid one but we would be reluctant to change our practice based upon the findings of this paper.

A S LOCKEY
S M BARNES
A&E Department, Dewsbury and District Hospital, Heath Road, Dewsbury WF13 4HS


The author replies

I agree with Doctors Lockey and Barnes that our study sample was small and that further larger studies are required to support the use of intrasos as an adjunct to clinical examination in determining the need for x ray examination.

The fracture in our study that would not have been picked up by use of intrasos alone was an undisplaced Weber A fracture of the lateral malleolus which was in fact missed by the SHO who reviewed the x ray. The patient was recalled after the x ray had been reported on and was found to be progressing satisfactorily.

The results of this study have prompted us to perform a larger study, and to look at clinical outcomes of any patients who have “an intrasos negative” ankle fracture.

ANGELA DANCOCKS
Northampton General Hospital
Alcohol intoxication in a toddler.

C Tovey, P S Rana and D J Anderson

doi: 10.1136/emj.15.1.69-d

Updated information and services can be found at:
http://emj.bmj.com/content/15/1/69.5.citation

These include:

**Email alerting service**

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

---

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/