Late clotted haemothorax after blunt chest trauma

Priyankar Sinha, Pradip Sarkar

Abstract

A clotted haemothorax can develop any time after blunt chest trauma. Two cases are described in which late clotted haemothoraces developed which were treated by limited thoracotomy and evacuation of clots. Late clotted haemothorax may occur even in the absence of any abnormal initial clinical findings. Early detection and treatment is important to avoid the complications of fibrothorax and empyema with permanent pulmonary dysfunction. After blunt chest trauma patients should be advised to return to the accident and emergency department for assessment on development of any new chest symptom. Under these circumstances a chest x-ray is mandatory to exclude a haemothorax.

Keywords: blunt chest injury; clotted haemothorax; thoracotomy

After blunt chest injury, a clotted haemothorax may be present at the time of initial consulta-
tion or develop a few days later, either in the hospital or after discharge. Occasionally they are discovered when the patient seeks medical advice for further respiratory symptoms, but some remain totally asymptomatic. Fibrothorax and empyema with permanent pulmonary dysfunction and disability are the complications of an untreated late clotted haemothorax. Early detection and surgical evacuation of the clots can achieve excellent results with preservation of pulmonary function. We present our clinical experience in two such cases.

Case 1

A healthy 75 year old man suffered fractures of the left third to eighth ribs after a fall from a height. Except for the rib fractures, the initial clinical and radiological investigations were normal. Four days later on the medical wards a haemothorax was noted on a routine chest x-ray (Fig 1). An intercostal tube drain was inserted which drained the haemothorax partially. The chest drain was resited but failed to drain the chest completely. By this time the patient was breathless and further investigations revealed a collapsed lower lobe of the left lung with a large clotted left haemothorax.

On the seventh day after his fall, he underwent a limited left thoracotomy and evacuation of the clots in his left chest, thus allowing full re-expansion of the left lung. There was no active bleeding. He had an uneventful recovery and at follow up one month later he was asymptomatic and clinical examination was normal.
Case 2
A well built 34 year old man suffered fractures to his right eighth and ninth ribs after a fall. When seen in the accident and emergency (A&E) department, no abnormality was detected except for local tenderness and the rib fractures on chest x ray. He was discharged home. He was readmitted as an emergency seven days later with shortness of breath owing to a large right haemothorax. An intercostal tube drain was inserted. This drained 1800 ml of sanguineous pleural fluid but the haemothorax failed to resolve completely. A resited chest drain did not drain any more fluid. Ultrasonography of the chest showed a 1 cm clotted haemothorax between the right lung and the diaphragm with partial collapse of the right lower lobe. He underwent a limited anterior thoracotomy and on evacuation of the clots the right lower lobe expanded fully. There was no active bleeding. He subsequently made an uneventful recovery. On follow up one month after discharge, he was asymptomatic with normal clinical and radiological examination.

Discussion
A haemothorax may occur after blunt chest trauma. A few such patients with blunt chest injury have normal clinical and radiological features at the first examination. They later develop a clotted haemothorax days or weeks after the initial event and become symptomatic.

Some authorities feel that if three or more rib fractures are present then a haemothorax is inevitable. A small haemothorax can be reabsorbed completely in a few weeks, but may also progress to further complications—fibrothorax or infection and empyema—in about 3.3% of patients. This can cause significant pulmonary dysfunction, morbidity, and disability. It is therefore imperative to remove the blood from the pleural cavity before it coagulates and fibrin is deposited on the pleural surfaces, leading to an inexpandible lung. In the early stages an intercostal tube drain can be effective, but once the blood has clotted this is unsuitable as it only achieves partial drainage. Helling et al have reported an 18% incidence of residual haemothorax following a tube thoracotomy for chest injuries.

The combination of streptokinase and streptodornase has been used for intrapleural fibrinolysis since the 1950s. Reports on the use of these agents have generally been limited to small numbers of patients in the early stages of the haemothorax, and with variable doses. A recent large prospective multicentre study has reported good results. However, enzymatic dissolution can cause fevers, allergic reactions, and prolonged bleeding.

Thoracoscopic evacuation of the retained clots has had variable success. "Thoracoscopic removal is best within 48 to 72 hours of the injury when the clot can be easily disrupted and sucked out. Beyond this period, the clot adheres to the lung and pleura, making thoracoscopic removal difficult." By definition, late clotted haemothoraces present late, with a pleural space filled with clotted blood, and therefore the role of intercostal tube drainage, enzymatic dissolution, or thoracoscopic evacuation is very limited.

An elective thoracotomy and evacuation of the clots is the preferred method of treatment. In our opinion, only open surgery can completely clear the pleural cavity of clots and loculated collections. This allows full re-expansion of the lung. This view has been shared by others. Pleural lavage can also be performed. Early elective thoracotomy is also associated with a decrease in hospital stay, morbidity, and mortality, and a reduced incidence of empyema and late decortication. With early evacuation bleeding is decreased and creation of air leaks on the lung surface is minimised. The whole operation can be performed quite easily and satisfactorily through a limited thoracotomy or "mini-thoracotomy."

In conclusion, patients with blunt chest injury and normal clinical and radiological lung findings should be advised to return to the A&E department for reassessment on developing of any new chest symptom. This is important, especially in cases with evidence of bony injury on chest x ray. The need for careful follow up has also been stressed by others.
Under these circumstances a chest x ray is mandatory to exclude a haemothorax. Late clotted haemothorax, once detected, requires an early thoracotomy for complete clearance and best long term results.

We thank Mrs Christina Hill and Mr Farid Khan in their help in preparing this paper.

Out of hospital cardiac arrest and associated injury

Andrew I Jones, M James Stuart, Alastair J Gray

Abstract
Three patients are described who sustained injuries around the time of a collapse that led to out of hospital cardiac arrest. In this group of patients the importance of taking a complete medical history and recording the circumstances of the syncope episode cannot be overemphasised. If cardiac output is successfully restored the possibility of occult traumatic injury must be considered in high risk patients. (J Accid Emerg Med 1998;15:191-192)

Keywords: cardiac arrest; resuscitation; occult trauma

In the immediate aftermath of a successfully resuscitated out of hospital cardiac arrest the presence of an injury may easily be overlooked. We present three cases which illustrate this point.

Case 1
A 65 year old male sustained a cardiac arrest in the street. Bystander basic life support was given immediately. The extended trained ambulance crew found him to be in ventricular fibrillation. Defibrillation restored sinus rhythm.

On arrival at the accident and emergency (A&E) department he was drowsy but responding to questions. He remained in sinus rhythm with a systolic blood pressure of 100 mm Hg. He appeared able to move only his shoulder girdle muscles. Brising to the forehead was noted.

Radiography of the neck showed advanced ankylosing spondylitis with a fracture-dislocation. He was stabilised on the intensive care unit but he died the following day.

Case 2
A 63 year old male sustained an out of hospital cardiac arrest. A nurse bystander gave basic life support. The attending extended trained ambulance crew found him to be in ventricular fibrillation, and sinus rhythm was rapidly restored by defibrillation. At this stage he was localising to pain and had a Glasgow coma score of 8. Examination at the A&E department showed bruising of his right temple. Radiography of his skull was normal but in view of his persisting reduced level of consciousness computed tomography was performed and showed frontal and temporal contusions. He was subsequently intubated and admitted to the neurosurgical unit. After 10 days he was discharged home.

Case 3
A 56 year old man suddenly collapsed in the street and was unconscious. It was noted to be in ventricular fibrillation by the attending ambulance crew. He was immediately cardioverted and cardiac output was restored.

On arrival in the A&E department he was agitated and combative. He was maintaining his own airway and his oxygen saturation was 99% while breathing high flow oxygen. He had
Late clotted haemothorax after blunt chest trauma.

P Sinha and P Sarkar

doi: 10.1136/emj.15.3.189

Updated information and services can be found at:
http://emj.bmj.com/content/15/3/189

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/