accident and
Northampton NN1
Medicine.
Moore, Dr
Emergency Medicine, Department
Northampton General NHS
384
to:
Correspondence
Consultant
A 49 year old man was brought to the accident and emergency department with a Glasgow coma score of 10 and bleeding from his right ear. A convergent squint was evident from inturning of the right eye. His head had been inadvertently crushed between a metal trolley and a wall. There were no other injuries. After resuscitation according to Advanced Trauma Life Support guidelines, radiography of his cervical spine demonstrated free air around the spinal cord (fig 1). The basal skull fracture with intracranial air was duly confirmed a short time later with bone windows on computed tomography (fig 2). The patient made a slow but uneventful recovery after a period of observation with antibiotic prophylaxis. He retains a minor squint.

This case highlights the value of a standardised approach to the management of major trauma and the need to be vigilant for the unusual when looking at x ray film. Intracranial air after head injury has been the subject of medical reports since 1884 and was initially thought to be rare, but Briggs drew attention to the problem, highlighting an incidence of 0.2% in all head injuries. Orebaugh and Margolis later placed the incidence as between 0.5% and 1%. The majority of these cases involved injuries to the face and gave rise to cerebrospinal fluid (CSF) rhinorrhoea. The

Basal skull fracture with intracranial air
R S Moore

A 49 year old man was brought to the accident and emergency department with a Glasgow coma score of 10 and bleeding from his right ear. A convergent squint was evident from inturning of the right eye. His head had been inadvertently crushed between a metal trolley and a wall. There were no other injuries. After resuscitation according to Advanced Trauma Life Support guidelines, radiography of his cervical spine demonstrated free air around the spinal cord (fig 1). The basal skull fracture with intracranial air was duly confirmed a short time later with bone windows on computed tomography (fig 2). The patient made a slow but uneventful recovery after a period of observation with antibiotic prophylaxis. He retains a minor squint.

This case highlights the value of a standardised approach to the management of major trauma and the need to be vigilant for the unusual when looking at x ray film. Intracranial air after head injury has been the subject of medical reports since 1884 and was initially thought to be rare, but Briggs drew attention to the problem, highlighting an incidence of 0.2% in all head injuries. Orebaugh and Margolis later placed the incidence as between 0.5% and 1%. The majority of these cases involved injuries to the face and gave rise to cerebrospinal fluid (CSF) rhinorrhoea. The

mechanism is thought to be due to deformation of the skull with fracture and immediate expulsion of CSF, closely followed by recoil and suction of air into the cranium. The presence of free air itself rarely causes significant morbidity, although the concept of "tension pneumocephalus" is well documented and can result in herniation syndromes if not recognised and decompressed. Other findings include headache, paresis, CSF rhinorrhoea or otorrhoea, seizures, frontal lobe dysfunction, and the patient's awareness of a succussion splash. Computed tomography is now the modality of choice for accurate description of the size and extent of intracranial air, although standard x-ray imaging will demonstrate most significant aerocoeles. This unusual case provided an opportunity for the diagnosis to be made in the resuscitation room.


Posterior dislocation of sternoclavicular joint in a child

S R Abdulla, S G Gandham

A 12 year old boy presented to the accident and emergency department after a fall off his bike. He was complaining of severe pain over the right collarbone and inability to move the right shoulder.

He was given oral dihydrocodeine and was sent for a radiograph of the right shoulder. On examination he was still in pain and the vital signs were normal. There was no swelling, deformity, or tenderness over the right shoulder or the lateral part of the right clavicle but there was swelling and severe tenderness over the right sternoclavicular joint and movements at the shoulder were restricted and painful. Distal pulsations and neurological functions were normal.

A radiograph of the right sternoclavicular joint showed no fracture. However, computed tomography was requested that showed the posterior dislocation of the sternoclavicular joint (see fig 1).

The child was admitted to hospital and a closed reduction was achieved under general anaesthesia with no complications.

Posterior dislocation of the sternoclavicular joint is a rare injury and especially so in children. Its importance lies in the fact that it is difficult to pick up on plain radiographs and although certain oblique views of the sternoclavicular joint may give a good diagnostic yield, computed tomography is the best way of attaining a definite diagnosis. However the key to the diagnosis is a strong clinical suspicion that should arise from the nature of the injury, the localisation of signs and symptoms, and especially the absence of fracture on the plain radiograph.

Early diagnosis is the key to successful management because the aim is to achieve a closed reduction, which is much safer than open reduction, and involves applying lateral traction to abducted arm under a general anaesthetic. An alternative method is to grasp the medial end of the clavicle with a sterile towel clips and apply a forward traction. The reduction is maintained by a figure of eight bandage, which should be kept for at least four to six weeks.

An important aspect in the management is that once diagnosed the patient should be treated as a major resuscitation candidate because of the serious and sometimes potentially life threatening complications that may ensue before and especially after reduction. Possible complications are trauma to the trachea; pneumothorax; laceration or compression of the superior vena cava, the subclavian artery, and the carotid artery; injury to the brachial plexus; and oesophageal trauma.

Basal skull fracture with intracranial air.

R S Moore

doi: 10.1136/emj.16.5.384

Updated information and services can be found at:
http://emj.bmj.com/content/16/5/384.citation

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/