LETTERS TO THE EDITOR

Anaesthetic training in accident and emergency

EDITOR,—I read with interest the comments of Boyle et al1 regarding anaesthetic training for accident and emergency (A&E) specialist registrars. They suggest that there is a definite advantage of spending six months as a “true” anaesthetic SHO as part of the A&E specialist registrar scheme, rather than as a supernumerary extra in theatre. As someone who initially undertook a training in anaesthesia with a view to entering higher training in A&E via this route, I would agree that it offers much more than the opportunity to become confident and competent at advanced airway management in the relatively controlled theatre setting. The additional period in anaesthesia offers the chance to gain many other skills that are extremely useful to the A&E trainee, particularly in the resuscitation setting, including the assessment and management of critically ill patients, providing ventilatory and circulatory support where necessary, the use of anaesthetic equipment, invasive haemodynamic monitoring techniques and transportation of critically ill patients. The opportunity to become proficient at the various regional anaesthetic techniques and to gain an understanding of pain management is also very relevant to A&E practice.

The possession of the FRCA, which requires at least 2.5 years of training in anaesthesia, is one of the established ways to enter the A&E specialist registrar grade. Surprisingly, in the current membership list of the British Association of A&E Medicine, only 60 (0.05%) members possess the DA (or old primary FRCA), with only 12 (0.01%) possessing the FRCA or equivalent.2 As our specialty continues to develop and accepts more responsibility for early advanced airway management, ventilatory and circulatory support and rapid sequence inductions, both within the A&E department and in the pre-hospital setting, I feel that we should encourage more of our junior trainees interested in a career in A&E to enter the specialist registrar grade via this route.

STEPHEN BUSH
Specialist Registrar in Accident and Emergency
stephen.bush@cwcom.net

ALASDAIR GRAY
Consultant in Accident and Emergency

JOHN J O'DONNELL
Specialist Registrar in A&E Medicine, Royal Infirmary of Edinburgh, Lauriston Place, Edinburgh EH3 9YW
(johnodonnell@lincom.net)

Rapid sequence intubation

EDITOR,—All emergency medicine specialists should be competent in rapid sequence intubation (RSI).1 We thank the authors for their commitment to training this essential skill.1

The simulator experience with video playback could be an extremely powerful teaching aid and a potential attendant to complications. Currently, only a few accident and emergency (A&E) departments in the United Kingdom have access to this expensive tool. RSI is a skill that is used with short notice and requires confidence and competence to perform appropriately. The cognitive and psychomotor skills needed are unlikely to be retained from a single course. RSI should therefore be taught as part of an integrated training programme. This should include prolonged exposure to intubations during an anaesthetic attachment, a short course similar to the National Emergency Airway Management Course from the USA covering core knowledge, and a process of revalidation and quality assurance.

We feel that the use of simulators would not be practicable for the primary training of the large numbers of UK A&E specialists in RSI. The use of simulators could, however, play a vital part in the regular appraisal and revalidation of individual practitioners once they have completed their training programme. This revalidation of skills and the regular audit of results should form the basis for the essential quality assurance, which this programme would need.

In summary, if we follow the airline pilot analogy, training occurs in the classroom and in the air, revalidation is the work of the simulator.

JACCID EMERG MED

STEPHEN BUSH
Specialist Registrar in Accident and Emergency
(stephen.bush@cwcom.net)

ALASDAIR GRAY
Consultant in Accident and Emergency
ALISTAIR MCGOWAN
Consultant in Accident and Emergency
St James’s University Hospital, Leeds LS9 7TF
NEIL NICHOL
Consultant in Accident and Emergency
Nineviths Hospital, Dundee

Emergency cranial computed tomography

EDITOR,—Harris et al2 apply Rothrock’s criteria3 to a UK population of non-trauma patients. Their abstract concludes “Simple criteria can be usefully applied to patients presenting to an A&E department in this country to target patients most likely to have clinically significant findings on urgent cranial computed tomography”. We believe that the method and findings of the study do not justify the change in practice implied by this conclusion.

Our methodological concerns are threefold. Information gathered retrospectively from notes and request forms casts doubt over the accuracy and completeness of the symptoms and signs (particularly the symptom of nausea). The inclusion criterion is ill defined (patients who are referred for computed tomography). There is no explanation for the inclusion of nausea (it is not one of Rothrock’s original criteria). There are also theoretical objections. To be useful, a clinical filter must be applied to unselected patients and include criteria that have a high inter-observer reliability. There is no logic in applying a clinical filter after the decision to investigate has been made.

Furthermore, both studies acknowledge that they do not tackle the problem of subarachnoid haemorrhage in young patients presenting with isolated headache. Surely this is a major consideration in formulating any criteria for computed tomography (CT)?

We applied Harris’ criteria to our prospective series of patients attending A&E with non-traumatic headache (248 patients). Seventy-two CT scans would have been performed. The criteria would have missed three (1.2%) patients with an abnormal CT scan.

JACCID EMERG MED

High level simulator

EDITOR,—We were delighted to read of the use of a high level simulator in emergency department training.1

From January 2000, we in the south west have secured three years of funding for the use of the same METI-HPS simulator for specialist registrar training at the Bristol Simulation Centre (www.bris.ac.uk/Depts/BMSC/C). Like the Wellington group, we face the challenge of creating realistic scenarios of critically ill and injured patients for the purpose of formative assessment. Clear advantages of the high level simulator over traditional advanced life support group scenario training include:

• real time, accurate audio and visual monitoring of responses to clinical and pharmacological interventions
• the use of videotape assisted hot review
• interactive physiology and pharmacology tuition, particularly in regards to the use of inotropes, anti-arrhythmics, sedatives, opioids and induction agents.

The additional features available on the METI-HPS were particularly a little understated in the Wellington paper. Voice simulation is standard, and has particular merit in a thrombolyis study days run at the Bristol Medical Simulation Centre. The mannequin is also able to simulate needle decompression of a tension pneumothorax (with audible hiss) and successful pericardiocentesis of a cardiac tamponade (with “blood” aspiration). It is able to blink and reproduce unilateral pupillary signs. A child mannequin is available, and a neonatal one is being developed.

On the other hand, at present the simulated wheezing is not convincing in asthma scenarios, and the mannequin cannot simulate grand mal fitting, colour change (pallor or cyanosis) or perspiration.

Like the Wellington study day, the south west simulator programme for trainees is an innovative extension of traditional emergency department training. We see it as an evolving project that will be carefully evaluated from both the trainer and trainee perspective. A further use of this technology already allowed online access to live training sessions broadcast from the centre via satellite (www.multi-med.co.uk) to user terminals installed at nine hospital sites in the UK.

We would welcome correspondence nationally and internationally.

GAVIN LLOYD
South-west Regional Training Committee for Emergency Medicine
(gavin.lloyd@sabhc.west.nhs.uk)

The authors reply

We are pleased that our study has prompted discussion about the use of clinical guidelines for emergency head computed tomography (CT) in the non-trauma population. This is a developing area where little evidence exists. It was interesting to hear that our modified criteria (any of: (1) GCS<14, (2) focal neurology and (3) headache with nausea or vomiting) would have missed three patients with subarachnoid haemorrhage who, when presenting with isolated headache, we have already acknowledged as a problem population.

Our modified criteria are simple, common-sense suggestions that reflect current practice regarding requesting CT from the accident and emergency department. We acknowledge the retrospective nature of our trial. Having now demonstrated that the criteria could be useful, prospective validation is necessary.

HELEN DRAPER
ANITA RHODES
St George's Hospital, Blackhaze Road, London SW17 0QT

The irritable hip

Editor,—As Mattick et al explain, the irrita-
ble hip is a common presentation that requires the exclusion of serious pathology. The protocol described allows appropriate outpatient management of many children. The text describes how no single investigation or examination finding is predictive of septic arthritis. We were however disappointed to see a “blanket” approach to investigations with all children undergoing blood tests.

History and examination are more useful than any investigation. If a child has been unwell, whether febrile or not, septic arthritis should be considered and appropriate investigation and treatment instituted.

Furthermore, in a well child with an isolated painful hip, structural problems need to be excluded with imaging but we have not found blood tests helpful. These are the factors that we use in the individual evaluation of a child with a painful hip in our emergency department.

We appreciate that the comprehensive approach by Mattick et al is aimed at detecting serious disorders but do not agree that blood tests are necessary for every limping child.

SARAH J BRIDGES
LISA L GOLDSWORTHY
Bristol Royal Hospital for Sick Children, St Michael’s Hill, Bristol

JASON L LOUIS
Maugers Park Hospital, Taunton

Medic 1 Trust Fellowship

The Medic 1 Trust Fellowship is awarded to facilitate education or research in the field of accident and emergency medicine and may be used for associated travel.

1 The Fellowship is awarded to a doctor or nurse currently working in the field of accident and emergency medicine.

2 Applicants must give details of completed preparatory work and a planned itinerary. Unsupported proposals of a general nature will not be accepted. Applicants must provide the names of two referees.

3 The value of the award will be a maximum of £2500. The amount of the award will be made on the recommendation of the honorary treasurer and with the approval of the Medic 1 Trustees.

4 The recipient is to be named the Medic 1 Trust Fellow.

5 The recipient will be required to present a written report to the chairmen of the Medic 1 Trust within three months of completion of their visit.

6 No individual may be awarded the Medic 1 Trust Travelling Scholarship on more than one occasion.

7 Applications can be made to:

The chairman of the Medic 1 Trust, c/o Maclay Murray & Spens Solicitors, 151 St Vincent Street, Glasgow G2 5NJ

8 A maximum of one medical scholarship and one nursing scholarship will be made every year.

9 Applications must be received by 31 October in any year.

Topical anaesthesia use in the management of children’s lacerations, a postal survey

Editor,—The suturing of lacerations of chil-
dren is often difficult. Infiltration with 1% plain lignocaine (lidocaine) is commonly used to make the suturing more comfortable. This infiltration may cause pain and render the child uncooperative for the rest of the procedure.

Topical anaesthesia (TA) has been descr-ipted since 1960.1 The agent commonly used is a mixture of 0.5% tetracaine, 0.05% adrenaline (epinephrine) and 11.8% cocaine (TAC). This method has a similar efficacy to infiltration but is less painful to apply1 and is used widely in the United States.

All 597 accident and emergency (A&E) departments in the UK were sent a question-naire about their use of TA in children’s lacerations.

There was a 71% response rate. Of the 34% of all responders who used TA, 33% used Emla, 31% used lignocaine and 26% used Artropet. Less than half of these felt TA was preferable to injection. Only 8% used a cocaine and adrenaline mixture but 91% of those preferred it. TAC was used in 3%.

Most (66%) departments did not use TA. There were many reasons given. The commonest reasons were “no experience” (38%), “TA ineffective” (20%), “slow onset” (10%) and “department protocol” (10%). Three per cent of responders were concerned about absorption.

This survey has shown that only a minority of UK A&E departments use TA for suturing children’s lacerations and, of these, few agents for which there is evidence. TAC use has been associated with prolonged fitting2 and mortality,3 is expensive and contains a controlled drug, the rare catastrophes to—

Feigning dystonia to feed an unusual drug addiction

EDITOR.—We recently had a patient attend our department repeatedly feigning acute dystonia in an attempt to obtain procyclidine medication. The case illustrates the fact that many medications are abusable. Patients are knowledgeable and may be willing to go to some lengths to obtain them fraudulently. Accident and emergency staff should be alert to this possibility when faced with unusual stories or situations. The psychotropic drug directory is a brief handy reference, which may help in such situations and can be obtained free of charge from Lundbeck Pharmaceuticals.

A 19 year old man of normal appearance, presented on three occasions complaining of neck pain and holding his neck in full extension. Examination revealed a full range of passive neck movements, with no other associated neurological or ocular abnormalities. The patient admitted to previous crack cocaine and marijuana misuse. He further stated that he had recently taken a substance he believed to be diazepam. A putative diagnosis of acute dystonia was made and he was treated with 5 mg intramuscular procyclidine. He made a recovery within a few minutes and was discharged.

The patient attended on two further occasions in the following month with the same presenting complaint. On his last visit he was aggressive, demanding an injection and “something to take home to stop this happening again”. Our suspicions were aroused by his demeanour and further discrete observation revealed that his posture normalised when he was unaware of being watched. He was warned of the abuse potential of procyclidine and offered the opportunity of consultation with the community psychiatric nurse. A note was made that he should have no further treatment without psychiatric evaluation.

Acute dystonia can be a side effect of certain medications. It is treated with anti-cholinergic or antihistaminic medication. Procyclidine (Kemadrine) is the usual drug used. Procyclidine is an anticholinergic drug whose potential for misuse, although described, is not widely recognised. It is believed to have an euphorant effect. Indicators of misuse include absence of symptoms when a patient is unaware of being observed, dystonia of a static form, the presence of non-organic neurology, evidence of a secondary gain, or symptoms of somatisation disorder. If simulation is suspected a call to the patients’ general practitioner or to local emergency departments may reveal, that the patient is “shopping”.

B DOORIS
C REID
Department of Accident and Emergency Medicine, Lister Hospital, Coreys Mill Lane, Stevenage SG1 4AB

High level simulator

Gavin Lloyd

doi: 10.1136/emj.17.4.309-b

Updated information and services can be found at:
http://emj.bmj.com/content/17/4/309.3

These include:

References
This article cites 1 articles, 1 of which you can access for free at:
http://emj.bmj.com/content/17/4/309.3#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.