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Objectives
x Discuss the principles of statistical inference
x Quantifying the probability of a particular

outcome
x Discuss clinical versus statistical significance

In covering these objectives we will intro-
duce the following terms:

x Population and sample
x Parameter and statistic
x Null hypothesis and alternative hypothesis
x Type I and II errors
The previous two articles discussed summaris-
ing data so that useful comparisons can be
made. Another common problem encountered
is estimating a value in a larger group based
upon information collected from a small
number of subjects. To see how statistics can
be used to achieve this, it is helpful to begin by
reviewing the meaning of five commonly used
terms:
x Population and sample
x Parameter and statistic
x Element
The word “population” describes a large group
that includes every possible case. In contrast, a
“sample” is a smaller group of subjects who are
part of the population. Therefore the popula-
tion of UK emergency departments would
have every emergency department in the UK
whereas those in the north west would
represent a sample.

A value measured in a population is known as
a “parameter”. Consequently the trolley waiting
time in UK emergency departments would be a
parameter. The term “statistic” is used to
denote the same variable when it is measured in
a sample. Finally each separate observation in
either a population or sample is called an
“element” and it is often labelled with the letter
X. The number of elements in a population is
given the letter N and in a sample, n.

It is often not possible to record all the
elements of a population. For example, a study
investigating the peak flow in asthmatic pa-
tients attending UK emergency departments
cannot review every patient. However, it is fea-
sible to record the peak flow in a sample of

asthmatic emergency department attendances.
From this statistic an estimation of the popula-
tion’s peak flow can be inferred. The name
given for manipulating data in this way is
therefore called inferential statistics. It can also
be used to make estimations about a sample
based upon information from a population.

In carrying out inferential statistics it is
important to ensure that samples are represen-
tative of the whole population and have been
randomly selected. If this is not the case, bias
will be introduced and a perverse answer could
result. For example, inferential statistics could
be used for making a national generalisation
following a survey on the waiting times in 20
emergency departments. However, problems
would arise if the sample did not represent the
population. For example, if the investigation
looked at district general hospital emergency
departments in London then it is unlikely to be
an accurate reflection of all the emergency
departments in the UK.

It is also important that each subject has an
equal chance of being included in the sample.
Consequently, if the trolley waits for elderly
patients was being studied, all such times need
to be recorded not just those measured when
there is an apparent delay. A possible way of
achieving this goal is by random sampling.
This is a method of selecting subjects such that
each member of the population has an equal
and independent chance of being picked. A
variety of techniques can be used including
flicking a coin, drawing numbers from a hat
and reading from random number tables.
However, by themselves, these techniques may
not be adequate because populations can be
made up of diVerent types of groups of various
sizes. This heterogeneity could have a bearing
on the study. For example the stage of a
disease, and the age or sex of a patient may
change the response to a particular drug. As
these are not necessarily evenly distributed in a
population it is important they are adequately
covered in the sampling process. This is
achieved by stratified random sampling in
which the population is initially divided into
homogeneous groups from which random
samples are taken. In this way representative
samples of the whole population can be
obtained.

Allowing for uncertainty
Measurements on people vary because we are
not all the same. Therefore the peak flow in 20

Key point
A population contains all the elements from
X1 to XN and a sample has n of the N
elements.
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randomly selected adults from your waiting
room would vary over a range of values. This
would be the case even if all the subjects were
perfectly healthy. We could reduce this range
by being very selective about who we
measured, for example being male, 1.75 meters
tall, good looking and from Yorkshire! How-
ever, even if you managed to find 20 such sub-
jects, the peak flows would still vary.

A useful way of considering this variation is
to plot it as a frequency distribution. When the
values from a reasonably homogeneous group
are shown in this way the curve takes upon the
shape of a “normal distribution”.1 This is
because many of the recordings are clustered
around the mean value with a symmetrical fall
oV in the frequency of recordings as you move
from the centre.

Inferential statistics enables us to take
account of these variations when estimations
about a parameter or statistic are been made. It
does this by quantifying the probabilities of the
possible outcomes.

Probability
In view of the variations discussed previously
we cannot predict with absolute certainty the
outcome of an event prior to it happening. This
uncertainty is often referred to as “a matter of
chance”. It is however possible to quantify this
uncertainty by calculating the probability of an
event occurring.

Probability (p) is invariably expressed as a
decimal value between 0 and 1, where zero
means that an outcome will never happen and
1 means it will always occur. Therefore, if 30%

of patients survive after a cardiac arrest in hos-
pital, the probability of survival would be writ-
ten as 0.3. As it cannot be larger than 1, it fol-
lows that the probability of an event not
occurring is 1−p. Therefore the probability of
not surviving a cardiac arrest is 1−0.3 = 0.7.

Probabilities are often used to help guide
management. For example after a head injury,
a patient with no skull fracture and no
neurological signs has a 0.00017 probability of
developing an operable intracranial hae-
matoma. This is such a low number that we
tend to discharge these patients under the care
of a sensible adult.

When using probabilities in determining
clinical decision making, one tends to err on
the side of caution so that no cases are missed.
This is seen with the Ottawa knee protocol
(box 1). A level is chosen where the probability
of missing a fracture is zero. Consequently
radiographs are reserved for those patients
with particular presenting symptoms.

COMBINING PROBABILITIES

Though a single finding, or test, can help in
clinical decision making, in practice we often
rely on several results before making a diagno-
sis. This process entails combining the prob-
abilities of each of the possible outcomes.

The chance of a particular outcome in any of
the tests carried out is equal to the sum of all
the probabilities. For example, if the probabil-
ity of a patient in your waiting room being
blood group O is 0.46, the chance of either of
two unrelated patients being blood group O is
0.46 + 0.46 = 0.92. This is known as the addi-
tional rule of probability and it can be written
as: Probability of outcome A or B = probability
of outcome A + probability of outcome B

To calculate the probability of a specific
combination of independent outcomes occur-
ring (for example, the probability of outcome A
and B), the separate outcome probabilities
need to be multiplied together. Therefore, the
probability of both patients being blood group

Key points
x Population This is a complete group (that

is, having every eligible person (or item)
with a particular characteristic). Depend-
ing on the study the actual size of a popu-
lation varies from modest (for example,
all minor injury units in a particular
region) to huge (for example, all emer-
gency treatment centres in Europe).

x Sample This is a subset of the population
that has been collected for a study. As
with the population, the size of a sample
can vary.

x Parameter This is the value of a variable in
a population.

x Statistic This is the value of a variable in a
sample.

x Element This is a single observation.
x Statistical inference This enables state-

ments to be made about a sample based
upon a population’s parameter. It also
allows the converse to occur but in this
case it is dependent upon random,
representative samples being taken.

Key point
Probability is the proportion of cases in a
study that have a particular result.

Key points
x Probability values are expressed as a deci-

mal from 0 to 1
x The probability of an event occurring

cannot be negative
x The probability of an event not occurring

is 1−p.

Box 1 Ottawa knee rule2

Order radiography of the knee if any of the
following are present:
x Patient older than 55 years
x Tenderness at the head of the fibula
x Isolated tenderness of the patella
x Inability to flex to 90 degrees
x Inability to transfer weight for four steps

both immediately after injury and in the
A&E department
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O is 0.46 × 0.46 = 0.21. This is the multiplica-
tion rule of probability and it can be written as:
Probability of outcome A and B = probability
of outcome A × probability of outcome B

However, the method used to calculate the
chance of a particular combination varies with
the independence of the outcomes. Independ-
ence in this context means the chances of a
particular result will not make another out-
come more or less likely. In the example given
above this obviously applies—a particular
patient’s blood group will not change the
chances of an unrelated patient being of certain
blood type.

It also follows that if the outcomes are not
independent then the multiplication probabil-
ity will not apply. This can be used to detect
factors that are related.3 To demonstrate this
assume the probability of loosing a finger in
your community is 0.01 and the probability of
working at “Happy crusher” the local steal
works is 0.1. If these were independent of one
another the probability of working at Happy
crusher and loosing a finger should be:

0.1 × 0.01 = 0.001
(that is, one chance in a 1000)

If you find out that in practice the figure is
0.01 you would suspect there is a connection
and the factors are not independent.

In clinical practice we are often dealing with
outcomes that are not mutually exclusive.4

Consequently you usually need to take into
account the probability of a combination
occurring. This can be calculated by modifying
the equation above to: Probability of outcome
A or B = probability of outcome A + probabil-
ity of outcome B−probability of outcome A
and B.

The following problem helps to demonstrate
these points. Let us say the probability of a
person having an emergency admission to hos-
pital at some stage in their life is 0.6. They also
have a 0.3 probability of being asked to
complete a telephone questionnaire in the
same time span. If these results were com-
pletely independent of one another, the prob-
ability of having an: Emergency admission and
a telephone questionnaire = 0.6 × 0.3 = 0.18

Consequently the probability of having
either an: Emergency admission or a telephone
questionnaire = 0.6 + 0.3−0.18 = 0.72

To illustrate what these figures mean it is
helpful to use a 2×2 table after converting the
probabilities into actual numbers. This is done
by assuming we are dealing with 100 people
(table 1).

From table 1 you can see that 18 people will
have both an emergency admission and a tele-
phone questionnaire some time in their life.
Seventy two will have one or both. This
number is the total of those having a telephone
questionnaire only (12) plus people having an
emergency admission only (42) plus those hav-
ing both an emergency admission and a
telephone questionnaire (18).

There is another method of calculating
probabilities when dealing with data that have
only two possible outcomes. Examples of such
binomial data include live or die; boy or girl,
success or failure. Consequently the outcomes
are mutually exclusive. The probability of a
specific combination of these outcomes can be
determined by use of the binomial probability
tables.5 These list the chances of obtaining
each of the possible outcomes.

As binomial distributions deal specifically
with combinations of independent, mutually
exclusive events, they are often not applicable
to emergency medicine. In contrast, they are
used in genetic counselling where some inher-
itance disorders, such as Tay-Sachs disease,
follow a binomial distribution. Koosis provides
a comprehensive account for those who wish to
learn more about this topic.5

Table 1

Telephone questionnaire

Yes No Total

Emergency admission
Yes 18 42 60
No 12 28 40
Total 30 70 100

Figure 1 Weight of staV in the emergency department of Deathstar General.
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DISPLAYING PROBABILITIES

In article 1 we discussed how a frequency dis-
tribution could be used to show graphically the
number of cases at each particular value of a
variable. This is demonstrated in the following
example. The specialist registrar at Deathstar
General, Dr Egbert Everard is concerned
about the health of the 40 male staV in the
emergency department. He therefore decides
to weigh them and plot the results as a
frequency distribution (fig 1). Probabilities can
be demonstrated in a similar way. To do this
Egbert divides the number of cases in each
weight category by the total number of cases in
the whole study (that is, 40). This gives him the
proportion of cases at each value. These values
can then be joined up to produce a distribution
curve (fig 1).

It is possible to use these distribution curves
to calculate the probability of having a value
equal to, or greater than, a particular number.
For example the proportion of staV with a
weight greater than, or equal to, 80 kg is repre-
sented by the area under the curve to the right
of 80 kg mark (fig 2). Probability distributions
have a further useful property in that the area
under the whole curve is equal to one. This is
because it represents the sum of all the possible
probabilities. Consequently the proportion of
staV with a weight less than 80 kg is
represented by the area under the curve to the
left of the 80 kg mark. This is equal to
[1−shaded area].

Statistical inference in medical studies com-
monly use probabilities in this way to test the
null hypothesis.

Testing the null hypothesis
Consider what you would do if asked to make
recommendations for your emergency depart-
ment on a new drug for asthma care following
a successful trial. Firstly, you would need to be
to sure the patients were representative and
randomly chosen. Secondly, any diVerence in
eVect attributable to the new treatment would
need to be judged in the light of the diVerences
between patients simply attributable to chance
variation.

We have seen that the probabilities of various
outcomes can be quantified using statistical
inference. However, it is not practical to test all
of the infinite number of possible diVerences
between the population and sample. Conse-
quently only the possibility of there being no
diVerence between the population and sample
is tested. It is then feasible to determine the
probability that a diVerence equal, or greater,
to that found in the study could be attributable
to normal variation. This is known as testing
the null hypothesis.

The probability of the null hypothesis being
correct is called the p value, a frequently used
term in medical journals. For example, in a
study comparing the rehabilitation time after
ankle sprains with new and standard treat-
ment, it was found that the mean diVerence
was four days (p = 0.01). Consequently the
chance that a diVerence this big, or bigger,
occurring when the null hypothesis is correct is
1 in a 100. This means that it is more likely that
there is a diVerence between the two treat-
ments. This is called the alternative hypothesis.

Nowadays the p value is calculated by com-
puter but the statistical tests used to work it out
depend upon the data in question and the type
of study. The choice of test is therefore impor-
tant so that meaningful results are obtained.

Later in this series the tests commonly used
in emergency medicine will be described so
that you will be able to choose the correct one.
At this point however it is useful to test our
understanding of the role of the null hypothesis
and p values by considering the results of a
recent publication. Sunde et al compared the
time from turning on the monitor to starting
chest compression in diVerent types of cardiac
arrest.6 In cases of asystole, the median time
delay was 29 seconds. This was significantly
shorter than the time found in patients with
electromechanical dissociation (EMD) (109
seconds, p <0.001). What does this mean?

The null hypothesis in this study is that the
time delays before cardiopulmonary resuscita-
tion in patients with asystole and EMD are the
same. However, the p values indicate that the

Figure 2 Distribution curve of the proportion of staV with a weight greater than or equal
to 80 kg.
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Key point
You can express the data in a frequency dis-
tribution as a distribution of probability.

Key point
The null hypothesis states that the diVer-
ence between the groups being tested is
attributable to chance variation.

Key point
The actual p value should be provided to
two decimal places.

Key point
The p value is derived from the raw data
using statistical calculations and tables
appropriate to the test carried out.
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probability of a diVerence of 80 seconds being
attributable to chance is less than one in a
thousand. It is therefore more likely that the
alternative hypothesis is correct and there is a
diVerence between these two groups.

STATISTICAL SIGNIFICANCE

Rejecting the null hypothesis means that a
“significant diVerence” exists between the
populations studied that cannot be explained
by chance alone.

A 2×2 table can be constructed for the four
possible outcomes of the null hypothesis (NH)
tested (table 2).

TYPE I ERROR

These mistakes occur when statistical tests
indicate that the null hypothesis is unlikely
(that is, the p value is low) but in actual fact
there is no diVerence between the study
groups. By convention, “statistical signifi-
cance” is accepted if the chance of making such
an error is less than 0.05. When these arbitrary
levels are given for a study they are often
referred to as á. Consequently when á = 0.05 it
is considered tolerable to make a “type I” mis-
take 1 in 20 times. However, the level
considered significant is determined by you the
investigator. It may be that a lower value of á is
required when testing the use of an expensive
or potentially toxic treatment. In this way the
chances of falsely rejecting the null hypothesis
can be kept small. In these cases you may wish
to use a value of 0.01 (that is, a 1 in a 100
chance of falsely rejecting the null hypothesis)
rather than the usual 0.05.

In considering the arbitrary level demarcat-
ing type I errors, it is also important to be
aware that the value for p is markedly aVected
by both the sample sizes and the magnitude of
any diVerence (that is, the point estimate). This
is demonstrated in table 3. In all cases the p
value is 0.05 but the diVerence and sample size
vary. For very large samples the diVerence only
has to be small to produce a statistically signifi-
cant result. The converse applies when the
sample is small. As will be discussed later in
this series, the p value is also aVected by the
standard deviation of the distribution.

TYPE II ERROR

These represent mistakes in falsely accepting
the null hypothesis and is represented by â. If â

is large there is a high chance of making a type
II error. As this is the opposite of what we
want, the reciprocal of the term is often used in
instead. This is known as “power” and is equal
to 1−â. Consequently a test with a high power
has a low chance of making a type II error.
Conventionally, a study is required to have a
power of 0.8 to be acceptable. In other words
the study should have an 80% chance of being
able to detect if the null hypothesis did not
apply.

Four factors eVect the probability of making
a type II error (box 2)

When á increases you are less likely to accept
the null hypothesis. Consequently the chances
of making a type II mistake fall. A balance
therefore has to be struck so that the chances of
both type I and II errors are kept as small as
possible.

We have already discussed that inferential
statistics are used to take account of variations
in statistics when a parameter is being esti-
mated. If the variations are large then possible
values for the parameter will also cover a wide
range. In such circumstances the chances of
rejecting the null hypothesis are reduced. Con-
versely factors that decrease variability will
increase the power of the study. Consequently,
as increasing the sample size leads to a fall in
variability, it will also reduce the chances of
making a type II error.

Table 2

Reality

True diVerence No diVerence

Statistical test
NH rejected Rejection correct Rejection incorrect

(type I error)
NH accepted Acceptance incorrect Acceptance correct

(type II error)

Table 3 The eVect of sample size and diVerence on the p
value when comparing two groups (assuming a constant
standard deviation)7*

Sample size of each group DiVerence (in units) p Value

4 10.0 0.05
25 4.0 0.05
400 1.0 0.05
2500 0.4 0.05
10 000 0.2 0.05

*Adapted from a theoretical study by Norman et al where they
compared the diVerence between the IQ in the normal popula-
tion and those reading their statistic book.

Key points
x It is possible to reduce the chances of

making type I error by using a lower á
level.

x The p value is aVected by the size of the
diVerence, the number of cases in the
sample and the standard deviation.

x In a large study, you are very likely to get
a “statistically significant” result.

x In a small study it is very hard to get a
“statistically significant” result. Conse-
quently a p value greater than 0.05 in this
situation proves nothing.

Box 2 Factors aVecting the power of a
study
x Size of á
x Variability of the sample
x Size of the sample
x Point estimate

Statistical methods used to test the null
hypothesis are termed “tests of signifi-
cance”

An introduction to statistical inference—3 361

www.jnlaem.com

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://em

j.bm
j.com

/
J A

ccid E
m

erg M
ed: first published as on 1 S

eptem
ber 2000. D

ow
nloaded from

 

http://emj.bmj.com/


The size of a diVerence between the study
groups (for example the control and the
experimental groups) will directly eVect power.
An increase leads to greater power as there is
less chance of falsely accepting the null
hypothesis.

To help understand these principles of null
hypothesis testing, consider a follow up study
carried out by Egbert. He was particularly
concerned about how overweight the male per-
sonnel were in the emergency department. He
therefore set up a study with the null
hypothesis being that the mean weight of fit,
healthy men and departmental men was the
same. Having weighed all 40 of them, he found
the mean weight was 87 kg. Figure 3 shows the
normal probability distributions of the two
populations. Population 1 all had the charac-
teristic of being fit and healthy whereas
population 2 were unfit couch potatoes.
Egbert’s finding of a mean of 87 kg could
therefore lie in either distribution. The chances
of a weight this big, or heavier and being part of
the population 1 is shown by the darker shaded
area. This represents á—that is, the probability
of making a type I error and falsely rejecting
the null hypothesis. Conversely the chances of
being part of population 2 and having a weight
this big, or lighter is shown by the lighter
shaded area. This represents â—that is, the
probability of making a type II error and falsely
accepting the null hypothesis.

The four factors mentioned above are used
in an equation to calculate the power of a
study. However, if you are setting up a study
you can set the power at a particular level
(often 80%). Therefore, if the size of the other

variables are known (that is, á, variability and
point diVerence), the same equation can be
used to determine how many subjects are
required in the study.

CLINICAL VERSUS STATISTICAL SIGNIFICANCE

Consider a study comparing a new anti-
hypertensive medication (A) with a standard
one (B). The result of the trial shows that the
blood pressures in patients receiving A were
significantly lower than those on B (p =
0.0001). This means the probability that the
diVerence found, or bigger, being attributable
to chance is 1 in 10 000. In a well run study we
would have no problem in accepting this as a
statistically significant result. However, this
does not mean it is clinically useful. In the
same study the point estimate between the
groups was 5 mm Hg. From a clinical point of
view we may consider this to be too small to
oVset the diYculties, side eVects and expense
associated with the drug A.

As stated before, accepting a p value of 0.05 to
reject the null hypothesis may not be appropri-
ate in some clinical settings. Clinical considera-
tions also have to be considered when accepting
the null hypothesis if the p value is greater than
0.05. You need to take into account the type of
study carried out, the number of subjects in
each group and the weight of other published
data. A further point that should be remem-
bered is that in clinical practice we usually need
to know the presence and size of any diVerence.
p Values only inform you on the likelihood of a
diVerence being attributable to chance (that is,
normal variation).

In the majority of cases these limitations
with the p value can be overcome by using
confidence intervals. This will be discussed
further in the following article.

Summary
Statistical inference is used to make comments
about a population based upon data from a
sample. In a similar manner it can be applied to
a population to make an estimate about a sam-
ple. It is commonly seen in medical publica-
tions when the null hypothesis is being tested.
This calculates the probability (p value) of a
type I error—that is, that a particular finding is
attributable to chance. It is also important to
be aware of the chances of a type II error—that
is, accepting the null hypothesis when it does
not apply. Sample size, point estimate and vari-
ability are common factors that will aVect theFigure 3 Distribution curves of the weights of healthy and unhealthy men.
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Key point
Increasing the sample size is one of the
commonest ways of increasing the power of
a study.

Key points
x The p value answers the question, “Is

there a statistically significant diVerence
between the study groups?”

x Clinical issues need to be considered
along with the size of the p value

x The size of any diVerence needs to be
known

x Statistical significance does not necessar-
ily mean clinical significance
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chances of making these two types of errors.
Interpreting results therefore needs to take
these factors into account as well as the clinical
relevance of the findings. Statistical signifi-
cance does not necessarily mean clinical
significance.

Quiz
(1) Complete the following phrase:

A parameter is to a –––– as a ––––- is to
a sample.

(2) You are told that the probability of a
female patient having a fractured femur is
0.3 and green eyes is 0.4. Assuming these
are independent of one another, what is
the probability that she has:

Both a fractured femur and green eyes
Either a fractured femur, or green eyes
or both

(3) Name three factors that will aVect the
chances of making a type I and II error.

(4) A new thrombolytic “Dyno-coronary” has
been developed. Though very expensive
and toxic it is thought to produce coronary
patency quicker than standard treatment. If
you were to design a study to assess this
what á level would you choose—0.05 or
0.01?

(5) One for you to do one your own.
Formulate the null hypothesis for the
study by Ireland et al that investigated
whether supine oblique views provide bet-
ter imaging of the cervicothoracic junction
than a swimmer’s view.7 Consider the con-
clusion drawn with respect to statistical
and clinical relevance.

Answers
(1) A parameter is to a statistic as a population

is to a sample.

(2) 0.3 × 0.4 = 0.12
0.3 + 0.4−0.12 = 0.58

(3) Point estimate, sample variability, sample
size

(4) You would be aiming to minimise the
chances of making a type I error, conse-
quently an á level of 0.01 would be prefer-
able.
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Correction
We regret that two errors occurred in the
statistics paper published in July
(2000;17:274–81). On page 277, 2nd column,
+/− signs were omitted from 2SD in the penul-
timate paragraph. On page 278, 1st column,
the equation was incorrect; it should have read:
SEM=SD/'—n
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