Fireworks injuries in Northern Ireland are not included in the national yearly figures published by the Department of Trade and Industry (DTI). Firework injury reporting has only been monitored in Northern Ireland since 1996, but the figures are collected and sent yearly to the DTI.

Legalising the sale of fireworks has resulted in an increase in the number of fireworks related incidents. This is not in keeping with the trends noted in Great Britain. Northern Ireland firework injury figures, albeit collected, are not included in the national reported figures.

Prior to this, it was illegal to buy fireworks in Ireland (the Explosives Act (Northern Ireland) 1970 (as amended by the Explosives (Amendment) (Northern Ireland) Order 1996)) allowed over the counter sale of fireworks to anybody over 16 year of age. Prior to this, it was illegal to buy fireworks in Northern Ireland.

For the same four week period (11 October–11 November) for the years 1994 and 1995, all accident and emergency notes were reviewed retrospectively and patients with firework related injuries were identified. The years 1996–1998 were collected prospectively. The patients’ age, sex, date of presentation, injury, site of injury and follow up were recorded.

Thirty five patients presented to the department with fireworks related injuries over the study period. This consisted of 27 men and eight women (fig 1). In men, their late teens (mean age 18 years, 77% of all males) were the predominant group. Fifty five per cent of injuries presented to this department the 5th of November (Guy Fawkes night). This trend is not reflected in national figures as the peak is not reflected in national figures as the trend is for the injuries to occur around three months of supervised training. I feel that if an anaesthetist were unavailable for the procedure rarely then they will become de-skilled and will have a higher complication rate than a colleague performing the procedure on a regular basis. Anaesthesia is defined as an essential secondment for training, why have this secondment if the skills are not going to be actively used.

In order to be given the responsibility of “on call” the anaesthesia minimum requirement is three months of supervised training. I feel that it is no coincidence that this also is the length of our secondment.

KELVIN D WRIGHT
Accident and Emergency Medicine, Wycombe General Hospital, Quean Alexandra Road, High Wycombe HP11 2TT, UK (Kchwright@doctors.org.uk)

EDITOR,—I have read with interest the article by Walker and Brenchley regarding the use of RSI by accident and emergency (A&E) physicians taking on advanced airway management in the UK. However, I feel this process must be approached with respect for the technique and a grasp of the need for practice and experience. Similarly anaesthetists should welcome this desire to share the responsibility for the “head end”, should not seek to unnecessarily shroud their art in mystery, and rather offer to facilitate the acquisition and maintenance of these skills.

ANDREW J CADAMY
C/o P&O Cruises (UK) Medical Department, Richmond House, Ternimus Terrace, Southampton PO14 3PN, UK (ajcadamy@compuserve.com)

should manage all RSIs and not just occasional attempts in acute situations.

Walker and Brenchley rightly point out that A&E patients “represent a distinct high risk subgroup” and that anaesthetists are concerned that “critically ill patients requiring immediate airway protection are the most difficult to manage”. Why then are operating department assistants (ODA) present at less than 50% of RSIs performed by A&E staff? The help of an ODA is of immense value to new consultants SHOs as well as experienced consultants. Neither would presume to undertake an anesthetic in a controlled theatre environment without an ODA present so why do A&E staff presume they can? Most emergencies arise by ambulance and a radio warning of an impending arrival is received. At this point an ODA should be requested and anaesthesia and A&E departments should have clear policies to facilitate this. In all but the most unexpected and dire airway emergencies an ODA should be present for a RSI. A&E medicine overlaps with many specialties and as anaesthetists we should stop being protective over RSIs and instead strive to share our airway expertise and our experience in using patient simulators for training.

MICHELLE WHITE
PhDiatric Intensive Care, Bristol Children’s Hospital

Authors’ reply

We agree with the comments made by Wright and White.

Cadamy notes that training and experience are essential. Part of the programme to introduce these skills in A&E would obviously include both inhouse training and courses such as the Advanced Airway Course, which is being introduced into the UK. We would suggest that emergency physicians should routinely undergo airway RSI in the department to maintain skills. Only attempting RSI of patients “in extremis” is clearly a recipe for disaster.

Trained assistance is obviously the ideal, but may not always be available for the same reasons as anaesthetic help is not immediately accessible in all circumstances. There may be scope to train A&E nurses in these basic skills.

A WALKER
J BRENCHLEY

Accident and Emergency Department, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK

Treatment of hyperkalaemia in the emergency department

EDITOR—I congratulate Dr Ahee and Dr Crowe on their excellent article on the treatment of hyperkalaemia in the emergency department.1 I have one query. The authors advocate the use of calcium gluconate 10% for its stabilising influence on the myocardium. The Resuscitation Council (UK) however, recommend that calcium chloride 10% be used in the treatment of electromechanical dissociation attributable to hyperkalaemia. I am under the impression that calcium chloride is preferable to calcium gluconate, the treatment of hyperkalaemia on account of its greater bioavailability.

STEWART MCMORRAN
Department of Accident and Emergency Medicine, Northampton General Hospital

Correspondence to: Dr McMorrans, Milton Keynes General Hospital, Standing Way, Milton Keynes, Buckinghamshire MK5 6LD (stewart.mcmorrans@btinternet.com)

Cleareing the cervical spine in the unconscious trauma patient

EDITOR.—We read with interest Mike Clancy’s comprehensive review of clearing the cervical spine in adult trauma victims.1 It highlights the current diverse methods of treating cervical spinal injury in the UK and USA, the difficulties of confidently excluding an unstable cervical spine injury in unconscious patients, and the potential for unnecessary cervical spine immobilisation. We report our initial experience with the use fluoroscopy to dynamically clear the cervical spine in obtunded patients. Since 1994 the following protocol has been adopted by the trauma service in Oxford for clearing the spine in the unconscious trauma patient. Anteroposterior and lateral radiographs are taken of the cervical, thoracic and lumbar spines, which may include one attempt at a swimmer’s or an oblique view if the cervicothoracic junction is not seen. All patients undergo computerised tomography of C1 and C2 cervical vertebrae, as well as at C7 and T1 if the cervicothoracic junction is not adequately visualised. The open mouth “peg view” is extremely difficult to achieve in the collared and intubated patient and has been abandoned in our unit. Unless an unstable injury is identified by the above imaging, the cervical spine is then screened dynamically at the earliest convenient opportunity (using a mobile C-arm BV29 Philips Image Intensifier) by a consultant trauma orthopaedic surgeon putting the neck through a progressively increasing range of movement until full flexion and extension has been achieved.

Between April 1994 and October 1997, 78 adult patients underwent dynamic screening of the cervical spine performed at a median of one day (range 0–12) after admission. Five of these patients (6.4%) had a cervical fracture or instability; fractures in three patients were readily apparent before dynamic screening and this test was used to confirm stability and allow collar removal. One stable spine was identified during dynamic screening that had previously been missed. One patient undergoing treatment to have had gross atlantoaxial instability in the absence of a fracture, and subsequently underwent surgical internal fixation; complete rupture of the interlaminar ligaments was confirmed.

Dynamic cervical screening was negative in 73 unconscious patients. Of these, 12 died mainly secondary to associated major intracerebral injury at a median of 4.5 days after injury. In the remaining 61, the cervical spine was cleared at a median of three days (range 5–33) before extubation and one day after admission to ITU. A total of 314 “days in collar” were saved over the study period. None of the deaths in the negatively screened patients were attributable to cervical injury and there were no adverse sequelae from screening in the survivors.

Dynamic cervical screening, unlike other imaging methods, has the advantage of providing direct evidence of cervical movement under controlled and increasing stresses. It can detect new injuries, confirm the stability of known or suspected fractures identified by plain radiographs. The procedure can be readily and rapidly performed in the resuscitation room, neurosurgery suite, theatres, or the intensive care unit. The many benefits of early collar removal have been emphasised in Clancy’s excellent review.2

The method does, however, require specific training and experience, and may not be feasible in a small proportion of patients because of their shape and size. Our findings add support to the observations of others1 that dynamic fluoroscopy is safe, sensitive and specific when used as part of the described spinal injury imaging protocol to identify unstable cervical spinal injuries in unconscious patients.

We have since implemented an identical spinal injury imaging protocol for unconscious injured children, the results of which are being currently analysed.

J J M BLACK
R A BROOKS
K WILLETT

Department of Accident and Emergency and Trauma Departments, John Radcliffe Hospital,Headingly Way, Oxford OX3 9DU, UK

Author’s reply

The letter by Black et al is very welcome in that it usefully adds to the limited literature on dynamic fluoroscopy in the obtunded patient. We need more information on the safety of this procedure as well as its performance as a diagnostic test. Injury to the brainstem or spinal cord may result from movement of the spine if there is unsuspected fracture of the dens, disruption of ligaments, traumatic disc extrusion or epidural haematoma.1 Given the apparent low frequency of these problems large numbers will be required to show its safety. What the letter from Black and colleagues demonstrates nicely is the ability of fluoroscopy to clear patients and also identify those with instability. This group of 78 adults combined with the 116 of Davis et al,20 of Sees et al,3 and 48 of Adjani et al indicates a growing body of evidence about this technique. Furthermore there has been no false negative results reported for a total of 242 survivors. What is essential is that all patients who undergo dynamic fluoroscopy should be followed up and their outcomes reported. The next question may well be which is best—MRI (expensive, difficult to undertake for this patient group but no false negatives reported for ligamentous instability and avoids the risks of dynamic fluoroscopy) or dynamic fluoroscopy (cheaper, bedside test) to clear the cervical spines of this difficult group of patients?

MIKE CLANCY
Department of Emergency Medicine, Southampton General Hospital, Tremena Street, Southampton SO16 6YD, UK

www.emjonline.com
Intranasal midazolam. An alternative in childhood seizures

Editor,—The fitting child is a common problem presenting to the emergency department. Prolonged fitting is potentially harmful and early treatment of seizures may reduce actual mortality and morbidity.

The gold standard against which new treatments have to be compared has been rectal diazepam or intravenous lorazepam.

Obtaining intravenous access in a fitting child can be difficult. The rectal route has been used successfully in hospital and before hospital admission. There are however difficulties with this route: absorption may be variable and non-medical staff may be reluctant to administer rectal drugs.

Recent interest has been shown in the use of midazolam administered via the buccal route to treat fits in the prehospital environment. It was shown to be efficacious and safe though no significant reduction in time to seizure cessation was found in comparison with rectal diazepam. A further trial set in an emergency department compared intranasal midazolam (0.2 mg/kg) with intravenous diazepam. Time to seizure control from admission was found to be less in the midazolam group.

Midazolam via the intranasal route has been successfully used for pre-procedural sedation of children and has confirmed anti-epileptic properties. Indeed EEG evidence of anti-epileptic action within two to five minutes of intranasal administration of midazolam has been demonstrated.

We have successfully used intranasal midazolam on two fitting paediatric patients who proved difficult to obtain intravenous access. The dose chosen was 0.5 mg/kg; one that has been used successfully for procedural sedation with no respiratory compromise.

CASE 1
A 15 month old male epileptic had been fitting for two hours before admission despite administration of rectal diazepam (2 × 5 mg). He was given 0.5 mg/kg intranasal midazolam. Fitting stopped within five minutes of treatment.

CASE 2
A 3 year boy had been fitting for 15 minutes. Fitting was seen to stop within 2.5 minutes of administration of 0.5 mg/kg of intranasal midazolam.

No patient suffered any respiratory depression or any other adverse effects.

We feel that the intranasal administration of midazolam warrants further evaluation as a treatment of the fitting child.
Clearing the cervical spine in the unconscious trauma patient

J J M Black, R A Brooks and K Willett

doi: 10.1136/emj.18.3.233-a

Updated information and services can be found at:
http://emj.bmj.com/content/18/3/233.2

These include:

References
This article cites 5 articles, 1 of which you can access for free at:
http://emj.bmj.com/content/18/3/233.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/