CLINICAL TOPIC REVIEW

Is cocaine needed in topical anaesthesia?

S Bush

Are non-cocaine containing topical anaesthetics as effective as cocaine containing topical anaesthetics in the management of lacerations? This review examines the current medical literature for effective agents that do not contain cocaine.

"Pain hurts".

The standard local anaesthesia technique used in UK practice before suturing is infiltration with 1% plain lignocaine (lidocaine). This method is painful but does give good anaesthesia.5

Topical anaesthesia (TA) has been used in the United States for two decades.1 The rationale behind its use was to avoid the needle prick and pain of infiltration while producing effective anaesthesia. There is also no tissue distortion with topical anaesthesia unlike subcutaneous infiltration.

The original mixture used for topical anaesthesia was TAC—0.5% tetracaine, 0.05% adrenaline (epinephrine), and 11.8% cocaine1 although a number of departments use different concentrations of the three drugs.2

Application of TAC is less painful than infiltration of lidocaine.5,9–11 In wounds of the face and scalp the anaesthetic effectiveness of TAC is equivalent to 1% lignocaine.5,10–15 Some studies have demonstrated equivalence with extremity wounds17–18 but other publications report that TAC is inferior to 1% lidocaine in this situation.19,20 Wound complication rates are similar for both drugs.5,9,11,15 In most comparisons with lidocaine have been made only in children but some have included adults.1

There are a number of drawbacks associated with the use of TAC. TAC is expensive6,9,15–18 and as a controlled drug, it is inconvenient to store and use. The most significant problems with TAC, however, are the rare but catastrophic complications of its use. There are several reports of seizures associated with its use in children.7–20

There is also a case report of the death of a child that has been attributed to the rapid absorption of cocaine via mucous membranes.21 Cocaine has been detected in the plasma of children treated with TAC.22 The majority of departments that use TAC avoid its use on mucous membranes but not all.20

Reducing the concentration of cocaine in TAC has been proposed to improve its safety profile22 but the safety issues remain, as do the cost and inconvenience factors. It is logical, therefore, to seek an agent that does not contain cocaine but is as effective in topical anaesthesia as TAC. The purpose of this review is to examine the literature for evidence of such an agent.

METHODS

The Medline database (1966–2000) was searched using the Ovid search engine. MeSH headings of “Anesthesia, local”, “Anesthetics, local” and “Administration, topical” were used. Searches were also made using “topical anesthesia” and “topical anaesthesia” as keywords. The results generated were combined with those from the MeSH headings “Wounds, nonpenetrating” and “Wounds, penetrating” and the keywords “laceration” and “incision”. The combined articles were limited to “English language” and “randomised controlled trial”.

Another electronic search was made of Medline using the Internet Grateful Med search engine. The query terms were “topical anesthesia or topical anaesthesia” with limitation to “Human” and “Randomised Controlled Trial”. The databases EMBASE, COCHRANE LIBRARY and BEST EVIDENCE CD were also searched in a similar manner. The internet was searched for “topical anesthesia” and “topical anaesthesia” using the Dogpile site.

All of the references of the chosen papers were examined to identify other relevant papers. The journals Annals of Emergency Medicine and Journal of Accident and Emergency Medicine were hand searched from 1994–2000.

RESULTS

Tables 1, 2, 3, and 4 show the results of the literature search.

Sixteen relevant papers have been identified by the search strategy. Five studies2–4,6–9,10,29 compared an agent comprising lignocaine, tetracaine, and vasoconstrictor with either TAC or 1% lidocaine infiltration. In all but one study2 the agent performed at least as well as the control. Application of the topical agent is less painful than infiltration.3 Tetralidophen4 performed less well. Lignocaine with epinephrine works well.15 Tetracaine alone is a poor topical agent3 as it is with adrenaline47 or 2.5% phenylephrine29 but with 5% phenylephrine31 it is similar to TAC.

Prilophen has been used in three studies by the same investigators. In two studies, it was less effective than lidocaine infiltration and TAC27,28 but in one study the results were similar.27 TAC is superior to prilophen.31 EMLA cream works better than TAC on extremity wounds in children2 but is not licensed for use on broken skin in the UK.

Mepivacain6,3,7 etidonor,6 and bupivacain6 alliviate less pain than TAC or lidocaine infiltration.

ABBREVIATIONS: TA, topical anaesthesia; TAC, tetracaine, adrenaline, cocaine

Correspondence to:
S Bush, Accident and Emergency Department, St James’s University Hospital, Leeds LS9 7TF, UK; steve.bush@cwcom.net

www.emjonline.com
Bupivanor is as effective as TAC and lidocaine infiltration. The wound infection rate was low in all studies.

DISCUSSION

Principal results

Fourteen different non-cocaine containing topical anaesthetics have been studied. Of these, agents with 4% or 5% lidocaine, bupivanor, and tetracaine have similar effectiveness to TAC or 1% lidocaine infiltration.

There have been no significant complications reported in any study.

Strengths and weaknesses of the search

The question chosen was one that was clinically relevant to A&E practice in the UK and should allow a number of papers to be identified.

Multiple electronic databases were used using a variety of search engines. Keywords were used in addition to MeSH headings in an attempt to improve sensitivity. Alternative spellings of certain keywords further increase the sensitivity. By using the references of the articles chosen to generate further papers and hand searching the two journals thought most likely to be relevant, more articles were found.

Despite this strategy, it is unlikely that all the relevant papers will have been chosen. There may be other journals that may produce a relevant article but that may be unavailable for hand searching. It is impracticable to attempt to hand search every title that possibly has a useful paper and electronic searches, though extremely useful, do not identify every paper.

Strengths and weaknesses of the papers

The studies were all prospective in design and almost all used a “gold standard” control of either VAS for TAC or LAT, by both groups = 0.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Agents using strong lignocaine (lidocaine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Agents</td>
</tr>
<tr>
<td>Ernst et al</td>
<td>3 ml of TAC v 3 ml of LAT (4% lidocaine, 1/2000 adrenaline, 1% tetracaine)</td>
</tr>
<tr>
<td>Ernst et al</td>
<td>1% buffered lidocaine with epinephrine v 3 ml LAT gel (4% lidocaine, 1/2000 adrenaline, 0.5% tetracaine).</td>
</tr>
<tr>
<td>Schilling et al</td>
<td>3 ml of TAC v 3 ml of LET (4% lidocaine, 1/1000 epinephrine, 0.5% tetracaine).</td>
</tr>
<tr>
<td>Ernst et al</td>
<td>3 ml TAC gel v 3 ml LAT gel - (4% lidocaine, 1/1000 epinephrine, 0.5% tetracaine).</td>
</tr>
<tr>
<td>Resch et al</td>
<td>3 ml LET (4% lidocaine, 1/1000 epinephrine, 0.5% tetracaine) solution v 3 ml LET gel.</td>
</tr>
<tr>
<td>Blackburn et al</td>
<td>10 ml TAC v 10 ml TLE (5% lidocaine, 1/2000 epinephrine).</td>
</tr>
</tbody>
</table>

Adler et al demonstrated that LET (4% lidocaine, 1/1000 epinephrine, 0.5% tetracaine) worked significantly better than sterile water.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Non-cocaine TAC derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Agents</td>
</tr>
<tr>
<td>Schaffer et al</td>
<td>2 ml TAC v 2 ml TA (No cocaine).</td>
</tr>
<tr>
<td>White et al</td>
<td>5 ml 0.5% tetracaine v 5 ml TAC.</td>
</tr>
</tbody>
</table>
Evidence in the literature for the first conclusion. Anaesthesia ineffective” and “no experience”. There is little associated with its use on mucous membranes. Only two with infiltration the pain associated with lidocaine infiltration. It is surprising, however. Several papers excluded patients after randomisation. Not all papers used previously validated scales outcome measures were used to assess the results of the anaesthesia, a blinded video observer was used. Well defined introduction of lacerations in children. The reluctance to use this technique in the UK may be to some extent reduced by the use of TAC and the inconvenience of its use, have resulted in the almost universal use of lidocaine infiltration in the UK. It is unlikely that further USA based trials of topical anaesthesia will affect the management of patients in the UK. It is unlikely that further USA based trials of topical anaesthesia will affect the management of patients in the UK. It is unlikely that further USA based trials of topical anaesthesia will affect the management of patients in the UK.

Implication for practice in the UK

Few A&E departments in the UK use topical anaesthesia before wound suture. The reasons given include “topical anaesthesia ineffective” and “no experience”. There is little evidence in the literature for the first conclusion.

Almost all the trials included here have been performed in the United States and the unfamiliarity with topical anaesthesia in the UK may both contribute to and result from this. The reasons given, together with the case reports of serious harm with the use of TAC and the inconvenience of its use, have resulted in the almost universal use of lidocaine infiltration in the UK. It is unlikely that further USA based trials of topical anaesthesia will affect the management of patients in the UK as 20 years of USA research have had little effect on UK practice. Topical anaesthesia should be used in the UK for the suturing of lacerations in children. The reluctance to use this technique in the UK may be to some extent reduced by the use of non-cocaine containing agents. The most effective agents available are ones that contain strong lidocaine and patients >5 years. TAC applied for up to 30 minutes, EMLA for up to 60 minutes. Smith et al33

<table>
<thead>
<tr>
<th>Group</th>
<th>Agents</th>
<th>Population</th>
<th>Score</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith et al33</td>
<td>3 ml tetradoxifen (TDP) (1% lidocaine, 2.5% phenylephrine, 1% tetradoxifen) v 1% lidocaine infiltration. Solution applied for 20 minutes.</td>
<td>Children over 1 year. Wound <5 cm on or near mucous membrane.</td>
<td>VAS of procedure by suturer, observer, video observer, patient and parent. Likert scale by all except patient.</td>
<td>VAS scores of suturers, observers and video observers higher with TDP than lido. Trend favouring lido from scores by patient and parent. Likert scores of suturers, observers, video observers and parents favour lido.</td>
</tr>
<tr>
<td>Wase et al32</td>
<td>Up to 5 ml of XAP (1% lidocaine, 0.5% tetracaine). Applied for up to 60 minutes.</td>
<td>‘Minor lacerations’ VAS lower with lidocaine than prilophen (p=0.003) and video observer (p=0.02). No difference with observer, patient or parent. No significant difference in the additional infiltration rate, lidocaine, 3 prilophen (p=0.60).</td>
<td>Infiltration rate</td>
<td>55% of TAC wounds required infiltration, 15% of EMLA (p=0.03). No significant difference of VAS scores by any group.</td>
</tr>
<tr>
<td>Zempsky et al31</td>
<td>3 ml TAC v 5 g EMLA cream (2.5% lidocaine, 2.5% prilocaine). TAC applied for up to 30 minutes, EMLA for up to 60 minutes.</td>
<td>Children 5–18 years. Extremity lacerations <5 cm.</td>
<td>VAS of procedure by suturer, patient, parent.</td>
<td>VAS scores lower with EMLA than prilophen by suturers (p=0.003) and video observer (p=0.02). No difference with observer, patient or parent. No significant difference in the additional infiltration rate, lidocaine, 3 prilophen (p=0.60).</td>
</tr>
<tr>
<td>Smith et al33</td>
<td>3 ml prilophen (3.56% prilocaine, 1/1000 phenylephrine) v 1% lidocaine infiltration. Solution applied for 20 minutes.</td>
<td>Children over 1 year. Wound <5 cm on or near mucous membrane.</td>
<td>VAS for suturing by suturer, observer, video observer, patient and parent.</td>
<td>VAS scores lower with lidocaine than prilophen by suturers (p=0.003) and video observer (p=0.02). No difference with observer, patient or parent. No significant difference in the additional infiltration rate, lidocaine, 3 prilophen (p=0.60).</td>
</tr>
<tr>
<td>Smith et al33</td>
<td>3 ml mepivacaine (2% mepivacaine, 1/100000 prilocaine) v 1% lidocaine infiltration. Solution applied for 20 minutes.</td>
<td>Children 2 years and older. Wound <5 cm on face or scalp.</td>
<td>VAS for suturing by suturer, observer, video observer, patient and parent. Likert score for suturing by parent and suturers.</td>
<td>VAS scores lower with lidocaine or TAC than with prilophen by suturers and observers. No difference with video observer, patient or parent. Likert scores by parents were higher with mepivacaine than with lidocaine or TAC (p=0.02).</td>
</tr>
</tbody>
</table>

Likert scale is a 7 point pain scale. All papers had clearly defined inclusion and exclusion criteria but many recruited convenience samples, which could introduce selection bias. Random number generators were generally used but some papers may have suffered bias because of the “arbitrarily assigned vials” and the use of the patient’s unit number for randomisation. A number of papers introduced blocking to maintain similar numbers in each group as the trial progressed. Bias could have resulted if the number of patients in each block was known. The randomisation process resulted in similar groups in the vast majority of papers.

Double blinding was the rule in those studies whose design allowed it. In those that compared infiltration with topical anaesthesia, a blinded video observer was used. Well defined outcome measures were used to assess the results of the papers. Not all papers used previously validated scales however. Several papers excluded patients after randomisation without further analysis.

Topical anaesthesia was introduced in an attempt to avoid the pain associated with lidocaine infiltration. It is surprising, therefore, that of the five studies comparing topical agents with infiltration7 8 29 30 only one compares the pain of application separately from the pain of suturing.7

The serious complications with the use of TAC have been associated with its use on mucous membranes. Only two studies28 30 allowed wounds on or near mucous membranes to be included. As a result of this (understandable) caution, there are a paucity of data relating to the safety of managing wounds in these areas where TAC is contraindicated.

Table 3 Other agents

<table>
<thead>
<tr>
<th>Group</th>
<th>Agents</th>
<th>Population</th>
<th>Score</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith et al33</td>
<td>3 ml tetradoxifen (TDP) (1% lidocaine, 2.5% phenylephrine, 1% tetradoxifen) v 1% lidocaine infiltration. Solution applied for 20 minutes.</td>
<td>Children over 1 year. Wound <5 cm on or near mucous membrane.</td>
<td>VAS of procedure by suturer, observer, video observer, patient and parent. Likert scale by all except patient.</td>
<td>VAS scores of suturers, observers and video observers higher with TDP than lido. Trend favouring lido from scores by patient and parent. Likert scores of suturers, observers, video observers and parents favour lido.</td>
</tr>
<tr>
<td>Wase et al32</td>
<td>Up to 5 ml of XAP (1% lidocaine, 0.5% tetracaine). Applied for up to 60 minutes.</td>
<td>‘Minor lacerations’ VAS lower with lidocaine than prilophen (p=0.003) and video observer (p=0.02). No difference with observer, patient or parent. No significant difference in the additional infiltration rate, lidocaine, 3 prilophen (p=0.60).</td>
<td>Infiltration rate</td>
<td>55% of TAC wounds required infiltration, 15% of EMLA (p=0.03). No significant difference of VAS scores by any group.</td>
</tr>
<tr>
<td>Zempsky et al31</td>
<td>3 ml TAC v 5 g EMLA cream (2.5% lidocaine, 2.5% prilocaine). TAC applied for up to 30 minutes, EMLA for up to 60 minutes.</td>
<td>Children 5–18 years. Extremity lacerations <5 cm.</td>
<td>VAS of procedure by suturer, patient, parent.</td>
<td>VAS scores lower with EMLA than prilophen by suturers (p=0.003) and video observer (p=0.02). No difference with observer, patient or parent. No significant difference in the additional infiltration rate, lidocaine, 3 prilophen (p=0.60).</td>
</tr>
<tr>
<td>Smith et al33</td>
<td>3 ml prilophen (3.56% prilocaine, 1/1000 phenylephrine) v 1% lidocaine infiltration. Solution applied for 20 minutes.</td>
<td>Children over 1 year. Wound <5 cm on or near mucous membrane.</td>
<td>VAS for suturing by suturer, observer, video observer, patient and parent.</td>
<td>VAS scores lower with lidocaine than prilophen by suturers (p=0.003) and video observer (p=0.02). No difference with observer, patient or parent. No significant difference in the additional infiltration rate, lidocaine, 3 prilophen (p=0.60).</td>
</tr>
<tr>
<td>Smith et al33</td>
<td>3 ml mepivacaine (2% mepivacaine, 1/100000 prilocaine) v 1% lidocaine infiltration. Solution applied for 20 minutes.</td>
<td>Children 2 years and older. Wound <5 cm on face or scalp.</td>
<td>VAS for suturing by suturer, observer, video observer, patient and parent. Likert score for suturing by parent and suturers.</td>
<td>VAS scores lower with lidocaine or TAC than with prilophen by suturers and observers. No difference with video observer, patient or parent. Likert scores by parents were higher with mepivacaine than with lidocaine or TAC (p=0.02).</td>
</tr>
</tbody>
</table>

All of these agents are not commercially available but may be manufactured and used as part of a trial. This trial is needed to identify that a genuine alternative to lidocaine infiltration exists and demonstrate its suitability in UK A&E practice.

Future Research

Two areas have been identified. Firstly, as mentioned above, a UK based trial of a non-cocaine containing agent compared with infiltration. This should be a prospective randomised controlled trial of one of the above mentioned agents compared with 1% lidocaine. The study should have well defined inclusion and exclusion criteria, blinded randomisation, a clear treatment policy, and blinded outcome variables. If the agent is shown to have similar anaesthetic properties to 1% lidocaine infiltration and is less painful on

Table 4 Multiple agents

<table>
<thead>
<tr>
<th>Group</th>
<th>Agents</th>
<th>Population</th>
<th>Score</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith et al</td>
<td>3 ml prilophen (0.48% bupivacaine, 1/26000 norepinephrine, 3 ml etid ropin, 0.95% etidocaine, 1/26000 norepinephrine, 3 ml meviparin, 1.9% meviparin, 1/26000 norepinephrine, 3 ml prilophen, 3.81% prilophen, 1/26000 norepinephrine, 3 ml TAC, 1% lidocaine, inflammation)</td>
<td>Children 2 years and older. Wound <5 cm. 60 TAC 30 Bupivaran 30 Mepivanor 30 Proliparan</td>
<td>VAS for suturing by suturer, observer and patients >5 years. Likert score for suturing by parent and suturers. RICDRS distress behaviour for suturing by suturers. Anaesthetic effectiveness by suturers.</td>
<td>No difference with any scale by any group between TAC and lidocaine. No difference with any scale by any group between bupivaran and TAC or lidocaine except anaesthetic effectiveness by suturers. Complex matrix of comparisons between agents using the 4 scores by the 4 groups. All other agents had some statistically significant poorer results than TAC or lidocaine.</td>
</tr>
</tbody>
</table>

RICDRS = restrained infant and child distress rating scale.

application, there would be a compelling reason for its use in routine UK practice. If this does occur, surveillance of safety is essential as even with TAC use, complications are rare and are unlikely to be identified in a single trial.

Secondly, wounds near mucous membranes may need suture. The concern with absorption of anaesthetic is attributable to the nature of the tissue, not the wound. Topical anaesthesia is routinely and safely used on intact mucous membranes in ophthalmology, urology, and dentistry. It is logical to suspect that agents that have similar efficacies to TAC and do not contain cocaine would be safe and effective when used on mucous membrane wounds and therefore may be studied in larger trials.

REFERENCES

www.emjonline.com

New EMJ online submission and review system

The Editors of Emergency Medicine Journal are pleased to inform authors and reviewers of its new online submission and review system, which will be available from 15 May 2002. Bench>Press is a fully integrated electronic system which uses the internet to allow rapid and efficient submission of manuscripts, as well as the entire peer review process to be conducted online.

Authors can submit their manuscript in any standard word processing software. Graphic formats acceptable are: .jpg, .tiff, .gif, and eps. Text and graphic files are automatically converted to PDF for ease of distribution and reviewing purposes. Authors are asked to approve their submission before it formally enters the reviewing process.

To access the system click on “SUBMIT YOUR MANUSCRIPT HERE” on the EMJ homepage: http://www.emjonline.com/, or you can access Bench>Press directly at http://submit-emj.bmjjournals.com/.

We are very excited with this new development and I would encourage authors and reviewers to use the on-line system where possible. It really is simple to use and should be a big improvement on the current peer review process. Full instructions can be found on Bench>Press http://submit-emj.bmjjournals.com/, and EMJ online at http://www.emjonline.com/. Please contact Natalie Davies, Project Manager, ndavies@bmjgroup.com for further information.

Pre-register!

We would be grateful if all Emergency Medicine Journal authors and reviewers pre-registered with the system. This will give you the opportunity to update your contact and expertise data, allowing us to provide you with a more efficient service.

Instructions for registering

1 Enter http://submit-emj.bmjjournals.com

2 Click on “Create a New Account” in the upper left hand side of the Bench>Press homepage

3 Enter your email address in the space provided.

4 Choose a password for yourself and enter it in the spaces provided.

5 Complete the question of your choice to be used in the event you cannot remember your password at a later time.

6 Click on the “Save” button at the bottom of the screen.

7 Check the email account you registered under. An email will be sent to you with a verification number and URL.

8 Once you receive this verification number, click on the URL hyperlink and enter the verification number in the relevant field.

9 Enter/amend your contact information, and update your expertise data.

10 Please note: You only need to create a new account once. If you submit to another BMJ Publishing Group journal you can use the same email address and password.
Is cocaine needed in topical anaesthesia?

S Bush

Emerg Med J 2002 19: 418-422
doi: 10.1136/emj.19.5.418

Updated information and services can be found at:
http://emj.bmj.com/content/19/5/418

These include:

References
This article cites 32 articles, 5 of which you can access for free at:
http://emj.bmj.com/content/19/5/418#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Other anaesthesia (235)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/