Skip to main content
Log in

Presentation and evaluation of a new optical sensor for respiratory rate monitoring

  • Published:
International journal of clinical monitoring and computing

Abstract

A new optical sensor for respiratory rate monitoring was simultaneously compared with an acoustic sensor and a transthoracic impedance plethysmograph during normoventilation in the respiratory rate range of 9–17 breaths per minute. The response characteristics of the optical sensor were then measured during simulation of central apnoea and tachypnoea. Visual observation was chosen as the reference method for monitoring the respiratory rate. The measurements were performed in ten healthy volunteers and the respiratory signals recorded on an analogue tape and strip-chart recorder and analysed off-line. The response characteristics of the fibre optic sensor corresponded well with those of the acoustic sensor and impedance plethysmograph. All three methods responded rapidly to an apnoeic event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vegfors M, Cederholm I, Lennmarken C, Löfström JB. Should oxygen be administered after laparoscopy in healthy patients? Acta Anaesthesiol Scand 1988; 32: 350–2.

    Article  PubMed  CAS  Google Scholar 

  2. Rosenberg J, Pedersen MH, Gebuhr P, Kehlet H. Effect of oxygen therapy on late postoperative episodic and constant hypoxaemia. Br J Anaesth 68: 18–22.

  3. Karayan J, Lacoste L, Fusciardi J. Postoperative Apnea in a full-term infant. Anesthesiology 1991; 75: 375.

    Article  PubMed  CAS  Google Scholar 

  4. Cote CJ, Kelly DH. Postoperative apnoea in a full term infant with a demonstrable respiratory pattern abnormality. Anesthesiology 1990; 72: 559–61.

    Article  PubMed  CAS  Google Scholar 

  5. Cox R, Goresky G. Life-threatening apnea following spinal anesthesia in former premature infants. Anesthesiology 1990; 73: 345–7.

    Article  PubMed  CAS  Google Scholar 

  6. Allison RD, Holmes EL, Nyboer J. Volumetric dynamics of respiration as measured by electrical impedance plethysmograph. J Appl Phys 1964; 19: 166–73.

    CAS  Google Scholar 

  7. Ashutosh K, Gilbert R, Auchincloss JH, Erlebacher J, Peppi D. Impedance pneumograph and magnetometer methods for monitoring tidal volume. J Appl Phys 1974; 37: 964–6.

    CAS  Google Scholar 

  8. Hamilton LH, Beard JD, Carmean RE, Kory RC. An electrical impedance ventilometer to quantitate tidal volume and ventilation. Med Res Eng 1967; 6: 11–6.

    PubMed  CAS  Google Scholar 

  9. Lentz G, Heipertz W. Capnometry for continuous postoperative monitoring of nonintubated, spontaneously breathing patients. J Clin Monit 1991; 7: 245–8.

    Article  Google Scholar 

  10. Roy J, McNulty S, Torjman M. An improved nasal prong apparatus for end-tidal carbon dioxide monitoring in awake, sedated patients. J Clin Monit 1991; 7: 249–52.

    Article  PubMed  CAS  Google Scholar 

  11. Henneberg S, Hök B, Wiklund L, Sjödin G. Remote auscultatory patient monitoring during magnetic resonance imaging. J Clin Monit 1992; 8: 37–43.

    Article  PubMed  CAS  Google Scholar 

  12. Hök B. Microphone design for bio-acoustic signals with suppression of noise and artifacts. Sensors and Actuators 1991; A 25–27: 527–33.

    Google Scholar 

  13. Hök B, Wiklund L, Henneberg S. A new respiratory rate monitor: Development and initial clinical experience. Int J Clin Monit Comp 1993; 10: 97–103.

    Google Scholar 

  14. Lindberg L-G, Ugnell H, Öberg P. Monitoring of respiratory-and heart rates using a fibre optic sensor. Med & Biol Eng & Comput 1992; 30: 533–7.

    Article  CAS  Google Scholar 

  15. Vegfors M, Ugnell H, Hök B, Öberg PA, Lennmarken C. Experimental evaluation of two new sensors for respiratory rate monitoring. Physiol Meas 1993; 14: 171–181.

    Article  PubMed  CAS  Google Scholar 

  16. Born M, Wulf E. Principles of optics. Pergamon Press, Oxford, Great Britain, 1975.

    Google Scholar 

  17. Pettersson H, Öberg PA. A new fibre-optic sensor for respiratory rate monitoring. IXth Nordic Meeting on Medical and Biological Engineering, June 13–16, 1993, Lund, Sweden.

  18. Tyler IL, Tantisira B, Winter PM, Motoyama EK. Continuous monitoring of arterial oxygen saturation with pulse oximetry during transfer to the recovery room. Anesth Analg 1985; 64: 1108–12.

    Article  PubMed  CAS  Google Scholar 

  19. Jense HG, Dubin SA, Silverstein PI, O'Leary-Escolas U. Effect of obesity on safe duration of apnea in anesthetized humans. Anesth Analg 1991; 72: 89–93.

    Article  PubMed  CAS  Google Scholar 

  20. Olsson T, Victorin L. Transthoracic Impedance, with special reference to newborn infants and the ratio air-to-fluid in the lungs. Acta Paediat Scand 1970; Suppl 207.

  21. Kurth CD, LeBard SE. Association of postoperative apnea, airway obstruction, and hypoxemia in former premature infants. Anesthesiology 1991; 75: 22–6.

    Article  PubMed  CAS  Google Scholar 

  22. Yellowlees IH. Fibre optic sensors in clinical measurement. Br J Anaesth 1991; 67: 100–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vegfors, M., Lindberg, LG., Pettersson, H. et al. Presentation and evaluation of a new optical sensor for respiratory rate monitoring. J Clin Monit Comput 11, 151–156 (1994). https://doi.org/10.1007/BF01132363

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01132363

Key words

Navigation