Oesophageal “cross” — a sinister foreign body

J E Losanoff, K T Kjossev, H E Losanoff

Abstract
A young jail inmate purposely ingested a foreign body formed of sewing needles, specially designed to be arrested in the gut and cause perforation. Immediate surgical removal of such ingested foreign objects is recommended because the chances of distal passage are nil.

Keywords: oesophagus; self-inflicted perforation; foreign body

Case report
A 23 year old prisoner presented with dysphagia of 10 hours’ duration. He gave a history of having purposely ingested a metallic foreign body 16 hours previously in an attempt to escape jail temporarily. Chest x ray showed a rather unusual foreign object which appeared to be situated within the cervical oesophagus (figure).

Following uncomplicated surgical removal, the patient explained how he made the device. Two sewing needles, each measuring approximately 5 cm, are tied crosswise with a rubber band, thus forming a “cross”. The construction of the cross is elastic — its two branches can be pulled together, but when released they return to their original position. With the branches lying parallel, the cross is wrapped in a small strip of paper and then ingested with some water.

Discussion
The foreign body created and ingested by our patient warrants special consideration because it has two potential puncturing points, cranial...
and caudal. Thus it seems dangerous or even impossible to remove it with safety endoscopically once it has been released from its wrapper.

Based upon the present experience, and upon our previous experience with five patients in whom multiple ingestions of “crosses” inevitably led to perforations of the stomach, duodenum, and small intestine in each instance, we recommend immediate surgical removal for any such type of ingested foreign object because the chances of distal passage are nil.

Finally, our case appears to be the first case with oesophageal location of a “cross”. Of special interest is the fact that this sinister foreign body was specially designed to arrest in its passage and cause perforation.