Search outcome
Six papers found of which one irrelevant and two of insufficient quality for inclusion; the remaining papers are shown in table 1.

Comment
Studies are not of best quality. More rigorous prospective studies with larger numbers are required to make definite recommendations. Isolated sternal fractures caused by seat belts with no associated injuries and normal electrocardiography and chest radiology appear to be benign and can be discharged provided pain is not severe. The situation with sternal fractures caused by other mechanisms is less clear.

Clinical bottom line
Patients with isolated sternal fractures caused by seat belts who have a normal electrocardiography, chest radiography, and stable vital signs can be discharged.

Management of household electrical injury

Report by Wendy Dollery, senior registrar

Clinical scenario
A 30 year old male electrician attends the emergency department having suffered an electric shock while servicing a washing machine. There was no water involved.

Three part question
In [patients who have sustained a household voltage electrical injury with normal initial electrocardiography] is [admission monitoring] necessary to [reduce the risk of sudden death from cardiac arrhythmias]?

Search strategy
Medline 1966 to 12/97 using the OVID interface. [exp electrical injury OR exp burns OR exp electrical OR injuries. ti,ab,sh] AND [exp monitoring, physiologic or monitoring. ti,ab,sh]

Search outcome
Forty four papers found of which 39 were irrelevant; the remaining papers are shown in table 2.

<table>
<thead>
<tr>
<th>Author, date, and country</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatovich and Lee, 1991, Australia</td>
<td>20 patients exposed to 240 volts AC electric supply</td>
<td>Observational study, literature review</td>
<td>Initial ECG, cardiac monitor</td>
<td>2/20 abnormal, no new abnormality detected</td>
<td>Retrospective, no statistical analysis</td>
</tr>
<tr>
<td>Cunningham, 1991 Australia</td>
<td>70 patients exposed to 240 volts AC electric supply</td>
<td>Observational study, survey of management policy</td>
<td>Initial ECG, cardiac monitor</td>
<td>11/59 abnormal, 6 deaths, no new abnormality detected</td>
<td>Retrospective, no statistical analysis</td>
</tr>
<tr>
<td>Bailey et al, 1995, Canada</td>
<td>151 children (age 8 months to 18 years) exposed to 120 or 240 volts AC electric supply</td>
<td>Observational study</td>
<td>Initial ECG, cardiac monitor</td>
<td>1/113 abnormal, no new abnormality detected</td>
<td>Retrospective, missing data</td>
</tr>
<tr>
<td>Garcia et al, 1995, USA</td>
<td>Patients aged less than 21 years exposed to minor (< 1000 volts) electrical injury</td>
<td>Observational study</td>
<td>Initial ECG, cardiac monitor</td>
<td>2/53 abnormal, no new abnormality detected</td>
<td>Retrospective, missing data</td>
</tr>
<tr>
<td>Wallace et al, 1995, USA</td>
<td>26 children exposed to 120 or 240 volts AC electric supply</td>
<td>Observational study</td>
<td>Initial ECG, cardiac monitor</td>
<td>1/17 abnormal, no new abnormality detected</td>
<td>Retrospective</td>
</tr>
</tbody>
</table>

EGC=electrocardiography.