Management of minor head injuries by non-specialists

Editor.—The management of patients with a minor head injury (MHI)—that is, a Glasgow coma scale score of 13–15—once the decision has been made to admit them, is relatively simple and straightforward. The value of having a neurosurgical specialist input could be looked upon as a luxury. In Nottingham there is a co-located accident and emergency (A&E) department with a regional neurosurgical unit. It is often the case that the A&E beds for observation become full and the local arrangements for the regional neurosurgical unit may admit the patient under their care. The use of this resource for this condition has been questioned and a retrospective review of patients with a MHI admitted to this hospital was undertaken to determine the actual involvement of neurosurgery in the management of these cases in a typical teaching hospital.

For the calendar year of 1996, 618 adults (>16 years of age) were admitted with a diagnosis of MHI for observation, of whom 89 (14.4%) were referred to the regional neurosurgical unit (M:F = 63:26; 70.8%:29.2%). Thirty-seven (42%) had other injuries, some of which would have required admission in any case, except for maxillofacial or spinal fracture in eight (9%), their MHI being truly minor.

The A&E referral was made because of no A&E beds in 47 (53%), was not stated at all on the admission card in 22 (25%), was for “social reasons” in four (4%), and in two (2%) was because they had been under a neurosurgical surgeon previously for a totally unrelated condition. Only two of 24 (8%) patients who had a computed tomography during their admission had anything abnormal detected, neither of whom needed any intervention beyond simple observation.

The same survey carried out in the same hospital in 1992 revealed, using a randomly acquired sample of 90 patients with MHI, that eight (9%) were referred to the regional neurosurgical unit, none of whom needed any active intervention.

One of the authors (NB) carried out a similar review of patients admitted under general surgeons with MHI for the year 1991 in a different large general hospital with a co-located A&E and neurosurgical (MHI) department (at that time a trial trauma centre) and subregional neurosurgical unit. Of 53 patients admitted with MHI only four (7.5%) required a neurosurgical opinion and none required active intervention.

These three temporally separate studies in two different, but similar, hospitals found a total of 761 patients admitted with MHI, none of whom required neurosurgery. It is our contention that no patients with MHI need be admitted under the care of neurosurgeons in this country and that patients who need specialist neurosurgical input can be identified by neurological observations in a non-specialist setting and referred for advice or action accordingly.

HENRY PAU

NEIL BUXTON

Department of Neurosurgery,
University Hospital, Nottingham NG7 2UH


Visual assessment of blood loss by accident and emergency staff

Editor.—Birknshaw et al have recently demonstrated that in reconstructed scenarios using manikins, 80% of estimates of blood loss by paramedics and technicians were underestimates, and for a blood loss of 3 litres the mean underestimate was 60%.[1] It is also important that staff in the accident and emergency (A&E) department can assess blood loss that is continuing within the department and also assess loss in clothing as it is removed, as is stressed in Advanced Trauma Life Support courses.[2]

We undertook a study whereby a measured volume (450 ml) of expired human whole blood was spilt over some clothing on a non-absorbent surface. After five minutes this scene was photographed. The photograph was shown to staff of the A&E department and they were asked to estimate the volume of blood shown in the photograph.

Forty A&E nurses and 18 senior house officers (SHOs) were surveyed. Their estimates of blood loss are shown in table 1. This demonstrates that staff in A&E show a wide variation in the accuracy of their estimates of blood loss. It is not reliable for clinical decision making. In contrast to the pre-hospital study, A&E staff appear to underestimate blood loss. None of the staff had ever been shown pictures of measured blood loss as part of their training. There is a need to train A&E staff in the assessment of external blood loss.

Table 1

<table>
<thead>
<tr>
<th>SHO</th>
<th>Nurse</th>
<th>Mean</th>
<th>Maximum</th>
<th>Minimum</th>
<th>1st quartile</th>
<th>3rd quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHO</td>
<td>Nurse</td>
<td>577.6</td>
<td>3000</td>
<td>50</td>
<td>200</td>
<td>681</td>
</tr>
<tr>
<td>SHO</td>
<td>Nurse</td>
<td>633.9</td>
<td>2500</td>
<td>30</td>
<td>250</td>
<td>575</td>
</tr>
</tbody>
</table>

This technique has not been tried in clinical practice and it is possible that the expiratory phase could become obstructed by tracheal mucosa, blood, or mucus. However, in the situation of a completely obstructed airway, where a satisfactory needle cricothyroidotomy for transtracheal jet ventilation has been performed, incorporation of an active expiratory phase may allow a clinically useful minute ventilation and would remove some degree the time pressure before a more satisfactory definitive airway (for example surgical cricothyroidotomy) is achieved.

G KESSELL

Consultant Anaesthetist, Cleveland School of Anaesthesia, Cheltenham House, South Cleveland Hospital, Marmot Road, Middlesbrough TS4 3BW

References
