report can be negative: first the search strategy may not identify secondly no research may have been published. In the latter case this may be because the research question is novel or because the question being asked has been considered not worth answering.

We have aimed to ensure that the search strategies used are highly sensitive (particularly in the case of negative BETs), but recognise the limitations of Medline. We believe that by only seeking to answer questions that have been raised in clinical practice we will avoid questions that are not worth answering. Thus negative BETs should identify novel research questions or highlight areas of clinical uncertainty.

It is therefore disappointing to see these negative BETs labelled as unhelpful, potentially misleading, or as a cause for misunderstanding. Rather they offer an opportunity for re-examining our ideas about the treatment of these conditions, and allow us to decide whether well designed studies that really answer the questions posed are needed.

Management of minor head injuries by non-specialists

Editor,—The management of patients with a minor head injury (MHI)—that is a Glasgow coma scale score of 13–15—once the decision has been made to admit them, is relatively simple and straightforward. The value of having a neurological specialist input could be looked upon as a luxury. In Nottingham there is a co-located accident and emergency (A&E) department with a regional neurological unit. It is often the case that the A&E beds for observation become full and the local arrangements for the regional neurological unit will admit the patient under their care. The use of this resource for this condition has been questioned and a retrospective review of patients with a MHI admitted to this hospital was undertaken to assess the actual involvement of a neurological unit in the management of these cases in a typical teaching hospital.

For the calendar year of 1996, 618 adults (>16 years of age) were admitted with a diagnosis of MHI for observation, of whom 89 (14.4%) were referred to the regional neurological unit (M:F = 63:26; 70.8%:29.2%). Thirty-seven (42%) had other injuries, some of which took priority. No required admission in any case, for example maxillofacial or spinal fracture in eight (9%), their MHI being truly minor.

The A&E referral was made because of no A&E beds in 47 (53%), was not stated at all on the admission card in 22 (25%), was for “social reasons” in four (4%), and in two (2%) because they had been under a neurosurgeon some time previously for unrelated conditions. Only two of 24 (8%) patients who had a computed tomography during their admission had anything abnormal detected, neither of whom required any intervention beyond simple observation.

The same survey carried out in the same hospital in 1991 revealed, using a randomly acquired sample of 90 patients with MHI, that eight (9%) were referred to the regional neurological unit, none of whom needed any active intervention.

One of the authors (NB) carried out a similar review of patients admitted under general surgeons with MHI for the year 1991 in a different large general hospital with a co-located A&E and regional neurosurgical department (at that time a trauma centre) and subregional neurological unit. Of 53 patients admitted with MHI only four (7.5%) required a neurological opinion and none required active intervention.

These three temporally separate studies in two different, but similar, hospitals found a total of 761 patients admitted with MHI, none of whom required neurological assessment. It is our contention that no patients with MHI need be admitted under the care of neurosurgeons in this country and that patients who need specialist neurological input can be identified by neurological observations in a non-specialist setting and referred for advice or action accordingly.

HENRY PAU
NEIL BUXTON
Department of Neurosurgery
University Hospital, Nottingham NG27 9QY


Visual assessment of blood loss by accident and emergency staff

Editor,—Birknshaw et al have recently demonstrated that in reconstructed scenarios using manikins, 80% of estimates of blood loss by paramedics and technicians were underestimates, and for a blood loss of 3 litres the mean underestimate was 60%. It is also important that staff in the accident and emergency (A&E) department can assess blood loss that is continuing within the department and also assess loss in clothing as it is removed, as is stressed in Advanced Trauma Life Support courses.

We undertook a study whereby a measured volume (450 ml) of expired human whole blood was spilt over some clothing on a non-absorbent surface. After five minutes this scene was photographed. The photograph was shown to staff of the A&E department and they were asked to estimate the volume of blood shown in the photograph.

Forty A&E nurses and 18 senior house officers (SHOs) were surveyed. Their estimates of blood loss are shown in table 1.

This demonstrates that staff in A&E show a wide variation in the accuracy of their estimations of blood loss and is not reliable for clinical decision making. In contrast to the pre-hospital study, A&E staff appear to overestimate blood loss. None of the staff had ever been shown pictures of measured blood loss as part of their training. There is a need to train A&E staff in the assessment of external blood loss.

Table 1 A&E staff's estimate of volume of a measured 450 ml blood loss

<table>
<thead>
<tr>
<th>Nurse/SHO</th>
<th>Minimum</th>
<th>1st quartile</th>
<th>Mean</th>
<th>Maximum</th>
<th>3rd quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurse</td>
<td>40</td>
<td>577.6</td>
<td>3000</td>
<td>50</td>
<td>681</td>
</tr>
<tr>
<td>SHO</td>
<td>18</td>
<td>633.9</td>
<td>2500</td>
<td>30</td>
<td>525</td>
</tr>
</tbody>
</table>