LETTERS TO THE EDITOR

Fireworks related injuries: does changing legislation make a difference? A thought for next Hallowe’en

EDITOR,—In August 1996 there was a change in legislation. The Explosives Act (Northern Ireland) 1970 (as amended by the Explosives (Amendment) (Northern Ireland) Order 1996) allowed over the counter sale of fireworks to anybody over 16 year of age.¹ Prior to this, it was illegal to buy fireworks in Northern Ireland.

For the same four week period (11 October–11 November) for the years 1994 and 1995, all accident and emergency notes were reviewed retrospectively and patients with fireworks related injuries were identified. The years 1996–1998 were collected prospectively. The patients’ age, sex, date of presentation, injury, site of injury and follow up were recorded. Thirty five patients presented to the department with fireworks related injuries over the study period. This consisted of 27 men and eight women (fig 1). Men in their late teens (mean age 18 years, 77% of all males) were the predominant group. Fifty five per cent of all injuries involved the hand.

There has been a threefold increase in the number of injuries presenting to this department after the change in legislation (χ² = 20.61, p<0.001). In this hospital, fireworks injuries presented most commonly on Hallowe’en night (31 October) and the following night (fig 2). This is due to the people of Londonderry celebrating “the biggest Hallowe’en party in Europe”. There is due to the people of Londonderry celebrating “the biggest Hallowe’en party in Europe”. This peak is not reflected in national figures as the trend is for the injuries to occur around the 5th of November (Guy Fawkes night).² With this in mind, campaigns should run to target periods that are identified locally.

Fireworks injuries in Northern Ireland are not included in the national yearly figures published by the Department of Trade and Industry (DTI).² Firework injury reporting has only been monitored in Northern Ireland since 1996, but the figures are collected and sent yearly to the DTI. Legalising the sale of fireworks has resulted in an increase in the number of fireworks related incidents. This is not in keeping with the trends noted in Great Britain. Northern Ireland fireworks injury figures, albeit collected, are not included in the national reported figures.

The authors state in their conclusions that among emergency physicians there is a “debate among emergency physicians, and anaesthetists, over their respective roles in management of patients requiring rapid sequence intubation”.¹¹ The RTI is the abbreviation for RSI. The patients who are intubated are all cases where the airway has been compromised. The RTI is the abbreviation for RSI. The patients who are intubated are all cases where the airway has been compromised. It is this need for experience gained in practice that would seem to pose the major problem in UK emergency departments. The number of cases in the UK where drugs are required to facilitate “immediate airway protection” must be comparatively low and these cases are conceded to be the most testing, even for experienced anaesthetists. Addition- ally in the more common cases where airway protection is less urgent, and where subsequent management is likely to be the responsibility of the anaesthetists or ITU staff, it would seem appropriate that the team delivering definitive care is involved from the outset. Opportunity, therefore, for an individual A&E physician to practise and maintain the skills they have been trained in would inevitably be infrequent. When faced with a case requiring RSI, even the most junior of on call anaesthetists is likely to have practised the technique more recently.

With all of this in mind I would still maintain that there probably is a place for A&E physicians taking on airway management in the UK. However, I feel this process must be approached with respect for the technique and a grasp of the need for practice and experience. Similarly anaesthetists should welcome this desire to share the responsibility for the “head end”, should not seek to unnecessarily shroud their art in mystery, and rather offer to facilitate the acquisition and maintenance of these skills.

should manage all RSIs and not just occasional attempts in acute situations.

Walker and Brenchley rightly point out that A&E patients “represent a distinct high risk subgroup” and that anaesthetists are concerned that “critically ill patients requiring immediate airway protection are the most difficult to manage”. Why then are operating department assistants (ODA) present at less than 50% of RSIs performed by A&E staff? The help of an ODA is of immense value to new registrars and SHOs as well as experienced consultants. Neither would presume to undertake an anaesthetic in a controlled theatre environment without an ODA present so why do A&E staff presume they can? Most emergencies arrive by ambulance and a radio warning of an impending arrival is received. At this point an ODA should be requested and anaesthesia and A&E departments should have clear policies to facilitate this. In all but the most unexpected and dire airway emergencies an ODA should be present for a RSI.

A&E medicine overlaps with many specialties and as anaesthetists we should stop being protective over RSIs and instead strive to share our airway expertise and our experience in using patient simulators for training.

MICHELLE WHITE
Paediatric Intensive Care, Bristol Children's Hospital

Authors’ reply

We agree with the comments made by Wright and White. Cadamy notes that training and experience are essential. Part of the programme to introduce these skills in A&E would obviously include both inhouse training and courses such as the Advanced Airway Course, which is being introduced into the UK. We would suggest that emergency physicians should routinely undertake airway RSI in the department to maintain skills. Only attempting RSI of patients “in extremis” is clearly a recipe for disaster.

Trained assistance is obviously the ideal, but may not always be available for the same reasons as anaesthetic help is not immediately accessible in all circumstances. There may be scope to train A&E nurses in these basic skills.

A WALKER
J BRENCHLEY
Accident and Emergency Department, Leices General Infirmary, Great George Street, Leeds LS1 3EX, UK

TREATMENT OF HYPERKALEMIA IN THE EMERGENCY DEPARTMENT

Editor—We want to address our concern about the treatment of hyperkalemia on account of its greater bioavailability.

STEWARD MCMORRAN
Department of Accident and Emergency Medicine, Northampton General Hospital

Correspondence to: Dr McMorrnan, Milton Keynes General Hospital, Standing Way, Milton Keynes, Buckinghamshire MK5 7LD
(stewart.mcmorrnan@btinternet.com)


Clearing the cervical spine in the unconscious trauma patient

Editor—We read with interest Mike Clancy’s comprehensive review of clearing the cervical spine in adult trauma victims. It highlights the current diverse methods of treating cervical spinal injury in the UK and USA, the difficulties of confidently excluding an unstable cervical spine injury in unconscious patients, and the problems of performing unnecessary cervical spine immobilisation. We report our initial experience with the use fluoroscopy to dynamically clear the cervical spine in obtunded patients.

Since 1994 the following protocol has been adopted by the trauma service in Oxford for clearing the spine in the unconscious trauma patient. Anteroposterior and lateral radiographs are taken of the cervical, thoracic and lumbar spines, which may include one attempt at a swimmer’s or an oblique view if the cervicothoracic junction is not seen. All patients undergo computed tomography of C1 and C2 vertebral bodies, as well as at C7 and T1 if this cervical-thoracic junction is not adequately visualised. The open mouth “peg view” is extremely difficult to achieve in the collared and intubated patient and has been abandoned in our unit. Unless an unstable injury is identified by the above imaging, the cervical spine is then screened dynamically at the earliest convenient opportunity (using a mobile C-arm BV29 Philips Imaging intensifier) by a major trauma orthopaedic surgeon putting the neck through a progressively increasing range of movement until full flexion and extension has been achieved.

Between April 1994 and October 1997, 78 adult patients underwent dynamic screening of the cervical spine performed at a median of one day (range 0–12) after admission.

Five of these patients (6.4%) had a cervical fracture or instability; fractures in three patients were readily apparent before dynamic screening and this test was used to confirm stability and allow collar removal. One stable spine underwent fracture was identified during dynamic screening that had previously been missed. One patient who underwent dynamic screening had gross atlantoaxial instability in the absence of a fracture, and subsequently underwent surgical internal fixation; complete fusion of the interlaminar ligaments was confirmed.

Dynamic cervical screening was negative in 73 unconscious patients. Of these, 12 died mainly secondary to associated major intracerebral injury at a median of 4.5 days after injury. In the remaining 61, the cervical spine was cleared at a median of three days (range 5–33) before extubation and one day after admission to ITU. A total of 314 “days in collar” were saved over the study period. None of the deaths in the negatively screened patients were attributable to cervical injury and there were no adverse sequelae from screening in the survivors.

Dynamic cervical screening, unlike other imaging methods, has the advantage of providing direct evidence of cervical movement under controlled and increasing stresses. It can detect new injuries and confirm the stability of known or suspected fractures identified by plain radiographs. The procedure can be readily and rapidly performed in the resuscitation room, angiography suite, theatres, or the intensive care unit. The potential benefits of early collar removal have been emphasised in Clancy’s excellent review.

The method does, however, require specific training and experience, and may not be feasible in a small proportion of patients because of their shape and size.

Our findings add support to the observations of others1 that dynamic fluoroscopy is safe, sensitive and specific when used as part of the described spinal injury imaging protocol to identify unstable cervical spinal injuries in unconscious patients.

We have since implemented an identical spinal injury imaging protocol for unconscious injured children, the results of which are being currently analysed.

J J M BLACK
R A BROOKS
K WILLETT
Accident and Emergency and Trauma Departments, John Radcliffe Hospital, Headley Way, Oxford OX1 9DQ, UK


Author’s reply

The letter by Black et al is very welcome in that it usesfully adds to the limited literature on dynamic fluoroscopy in the obtunded patient. We need more information on the safety of this procedure as well as its performance as a diagnostic test. Injury to the brainstem or spinal cord may result from movement of the spine if there is unconfirmed fracture of the dens, disruption of ligaments, traumatic disc extrusion or epidural haematoma.1 Given the apparent low frequency of these problems large numbers will be required to show its safety. What the letter from Black and colleagues demonstrates nicely is the ability of fluoroscopy to clear patients and also identify those with instability. This group of 78 adults combined with the 116 of Davis et al,20 of Sees et al,4 and 48 of Adiani et al indicates a growing body of evidence about the techniques described and that there have been no false negative results reported for a total of 242 survivors. What is essential is that all patients who undergo dynamic fluoroscopy should be followed up and their outcomes reported. The next question may well be which is best—MRI (expensive, difficult to undertake for this patient group but no false negatives reported for ligamentous instability and avoids the risks of dynamic fluoroscopy) or dynamic fluoroscopy (cheaper, bedside test) to clear the cervical spines of this difficult group of patients?

MIKE CLANCY
Department of Emergency Medicine, Southampton General Hospital, Tremuna Street, Southampton SO16 6YX, UK

A WALKER
J BRENCHLEY
Correspondence to: Dr McMorrnan, Milton Keynes General Hospital, Standing Way, Milton Keynes, Buckinghamshire MK5 7LD
(stewart.mcmorrnan@btinternet.com)


Letters to the editor

EMERGENCY DEPARTMENT ACCESSIBLE IN ALL CIRCUMSTANCES. THERE MAY BE DISASTER.

Letters to the editor

EMERGENCY DEPARTMENT ACCESSIBLE IN ALL CIRCUMSTANCES. THERE MAY BE DISASTER.

Letters to the editor

EMERGENCY DEPARTMENT ACCESSIBLE IN ALL CIRCUMSTANCES. THERE MAY BE DISASTER.
Intranasal midazolam. An alternative in childhood seizures

EDITOR,—The fitting child is a common problem presenting to the emergency department. Prolonged fitting is potentially harmful and early treatment of seizures may reduce actual mortality and morbidity.

The gold standard against which new treatments have to be compared has been rectal diazepam or intravenous lorazepam.

Obtaining intravenous access in a fitting child can be difficult. The rectal route has been used in hospital and before hospital admission. There are however difficulties with this route: absorption may be variable and non-medical staff may be reluctant to administer rectal drugs.

Recently interest has been shown in the use of midazolam administered via the buccal route to treat fits in the prehospital environment. It was shown to be efficacious and safe though no significant reduction in time to seizure cessation was found in comparison with rectal diazepam. A further trial set in an emergency department compared intranasal midazolam (0.2 mg/kg) with intravenous diazepam. Time to seizure control from admission was found to be less in the midazolam group.

Midazolam via the intranasal route has been successfully used for pre-procedural sedation of critically ill patients: a prospective evaluation. Anaesth Intensive Care 1998;26:487–91.

Communication skills training for emergency department doctors

EDITOR,—It is good to read the two papers in the journal concerning communication training for emergency department doctors. A trained general practitioner I feel this is a subject that could be given more importance in the training of emergency doctors who spend a large part of their working day consulting with patients. I agree with the authors stating its importance due to; the number of communication-based complaints and the stress/anxiety that dysfunctional consultations can cause the doctor. However, difficult consultations in the emergency department have the potential to be a source of huge job satisfaction. The key is in preventing it turning dysfunctional and ensuring that all issues are swiftly resolved from both patient and doctor point of view but eliminating in two happy people, rather than two stressed and unhappy people with one of them likely to complain.

However, I wonder how much improvement in consultation skills can be gained at very junior doctor level before the necessary acquisition of hard medical facts and experience has occurred. General practice registrars spend their practice trainee year dedicating a lot of time to learning about and improving their consultation skills—but only after a minimum of two years spent in hospital medicine. Also as the authors mention; consultation deficiencies are not confined to junior doctors. A secondment to general practice would be the ideal environment for emergency doctors to improve these skills assisted by the teaching of general practitioner trainers who are by far the most experienced in this area. Time could be spent in studying various consultation models as described by many authors over the years (Balan M 1957/Byrne and Long 1976/Pendleton, Schofield, Tate, Havelock 1984/Neighbour R 1987) along with retrospective analysis of recorded consultations and joint surgeries. A secondment to a training general practice as part of any SpR training programme or even possibly as consultant continuing professional development would in my opinion be potentially invaluable.

Letters to the editor


RAY MCGLONE
M SMITH
Accident and Emergency Department, Royal Lancaster Infirmary, Ashton Road, Lancaster LA1 4RP, UK

Correspondence to: Dr McGlone (ray@mcglone.bbbfree.co.uk)


Why do children vomit after head injury?

EDITOR,—Fiona Brown and colleagues studied outcomes in 463 children and found no increase in skull fracture in the presence of post-traumatic vomiting (PTV). They concluded that “vomiting alone does not have a role in decision making regarding further investigation of skull or brain injury”. These conclusions should be applied with caution. Our own series of 5416 patients included 2581 children. The incidence of PTV in our study was similar to that of Brown and colleagues (12% versus 15%) but the incidence in children with a skull fracture was 53% (95% CI 20%, 48%). A single episode of vomiting after a head injury in children was associated with a relative risk of fracture of 3.61 (95% CI 1.8, 7.25). In alert children the fracture rate was more or less doubled, although the confidence limits indicated a trend not quite reaching statistical significance. A number of other published studies have demonstrated an association between PTV and skull vault fractures.

Authoritative guidelines, soon to be published, will suggest that the PTV is included as an indication for skull radiography after head injury in adults, and possibly also in children (personal communication, Mr Ian Swann). Vomiting may be regarded as a fairly sensitive, though not very specific, indicator of fracture risk in alert children after head injury. To ignore this symptom is to risk overlooking a fracture of the skull vault, which substantially increases the risk of intracranial complications.

PATRICK A NEE
Accident and Emergency Department, Whiston Hospital, Prescot, Merseyside L35 5DR, UK


www.emjonline.com