Best evidence topic reports (BETs) summarise the evidence pertaining to particular clinical questions. They are not systematic reviews, but rather contain the best (highest level) evidence that can be practically obtained by busy practising clinicians. The search strategies used to find the best evidence are reported in detail in order to allow clinicians to update searches whenever necessary.

Five of the BETs published below were first reported at the Critical Appraisal Journal Club at the Manchester Royal Infirmary.1 Four guest BETs submitted from around the world are also shown. Each BET has been constructed in the four stages that have been described elsewhere.2 The BETs shown here together with those published previously and those currently under construction can be seen at http://www.bestbets.org.3

Guest BETs
- The Ottawa ankle rules in children
- Belching as a symptom of myocardial ischaemia
- Skull fracture and intracranial injury in children
- Indication for head CT in children with mild head injury

Negative urine analysis to exclude urinary tract infection

Report by Bruce Martin, Specialist Registrar in Emergency Medicine

Checked by Angaj Ghosh, Senior Clinical Fellow

Clinical scenario

A very anxious mother brings her 4 year old daughter to the emergency department concerned about her persistent fever. Examination reveals that she does indeed have a temperature of 37.6°C. She has no obvious signs of localised infection, so you decide that you need to test her urine to see whether she has got a urinary tract infection (UTI). After much coaxing she provides you with a sample but you now wonder if dipstick analysis is sufficient for diagnosis, or whether you ought to arrange for urgent microscopy.

Three part question

In [children with pyrexia with suspected UTI] is [dipstick urine analysis as sensitive as microscopy] in [ruling out infection]?

Search strategy

Medline 1966–08/01 using the OVID interface. (exp adolescence/ OR exp child/ or exp child of impaired parents/ or exp child, abandoned/ or exp child, exceptional/ or exp child, hospitalized/ or exp child, institutionalized/ or exp child, preschool/ or exp child, unwanted/ or exp disabled children/ or exp homeless youth/ or exp infant/ or exp only child/ OR child$.mp) AND (exp Indicators/ and reagents/ OR exp Reagent strips/ OR exp Urinalysis/ OR dipstick.mp) AND (exp Urinary tract infections/ OR urinary tract infection.mp) AND (exp “sensitivity and specificity”/ or “sensitivity and specificity”.mp OR diagnos$.mp OR exp Diagnosis/) LIMIT to human AND english.

Search outcome

Altogether 156 papers found. Of these, one was a recent meta-analysis that included all those papers identified as answering the three part question (table 1)
Clinical bottom line

Children who present with fever and who have positive dipstick testing for leucocyte esterase and nitrite should be given antibiotics and referred for further investigation. Dipstick testing would appear to have the sensitivity for children with negative testing to be discharged, with the urine being sent for Gram stain and culture the following day rather than arranging urgent microscopy.

Search strategy

Medline 1966–08/01 using the OVID interface. [exp piroxicam/ OR piroxicam.mp OR feldene.mp] AND [exp diclofenac/ OR diclofenac.mp OR voltarol.mp] AND [exp kidney calculi/ OR exp Ureteral calculi/ OR renal colic.mp]

Clinical bottom line

IM piroxicam appears to perform better than IM diclofenac for renal colic pain relief. Given it has fewer injection site effects IM piroxicam should replace IM diclofenac for renal colic.

Three part question
In [renal colic] is [oral fast dissolving piroxicam or IM diclofenac] better [at reducing pain]?

Search strategy
Medline 1966–08/01 using the OVID interface. [exp Diclofenac/ OR exp diclofenac sodium/ OR diclofenac.mp OR voltarol.mp] AND [exp piroxicam/ OR piroxicam.mp OR feldene.mp] AND [renal colic.mp OR exp ureteral calculus/ OR exp renal calculi]

Search outcome
Two papers were identified of which one was found to be relevant (table 3).

NIPPV for acute cardiogenic pulmonary oedema
Report by Rupert Jackson, Specialist Registrar in Emergency Medicine
Checked by Steve Jones, Specialist Registrar in Emergency Medicine

Clinical scenario
A 76 year old man is brought in to the emergency department in a collapsed state. He has a history of ischaemic heart disease. He is agitated, tachypnoeic and sweating profusely. His neck veins are distended and there are widespread coarse crepitations in his chest. He has a diminished oxygen saturation. You make a clinical diagnosis of acute cardiogenic pulmonary oedema. In addition to vasodilator treatment and opioids, you wonder whether you should administer non-invasive positive pressure ventilation (NIPPV).

Three part question
In [patients with acute LVF] is [NIPPV better than alternative treatment strategies] at [avoiding intubation and improving mortality]?

Search strategy
Medline 1966–08/01 using the OVID interface. [exp pulmonary edema/ or “pulmonary oedema”]

Table 3

<table>
<thead>
<tr>
<th>Author, date and country</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervia A et al, Spain, 1998</td>
<td>80 sequential patients with a clinical diagnosis of renal colic confirmed by either urine analysis or ultrasound.</td>
<td>Double blind randomised controlled trial</td>
<td>Pain as measured by visual analogue score at 30 minutes</td>
<td>Both treatments significantly reduced pain scores at 30 minutes post administration. No significant difference evident between treatments in terms of efficacy of pain relief.</td>
<td>Relatively small numbers with no power study so possible type II error.</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Author, date and country</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehta S et al, 1997, USA</td>
<td>27 patients with ACPO NIPPV v CPAP</td>
<td>Prospective randomised controlled trial</td>
<td>Clinical variables</td>
<td>BP and PaCO2 lower in NIPPV group (p<0.05)</td>
<td>Small numbers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incidence of myocardial infarction</td>
<td>10/14 in NIPPV group v 4/13 with CPAP (p<0.05)</td>
<td>Study stopped early due to MI differences. NIPPV had more chest pain at baseline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Length of ICU/hospital stay, intubation rates, mortality</td>
<td>N/S differences between groups</td>
<td>No power calculation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intubation rate</td>
<td>2/20 in NIPPV group v 0/20 (N/S)</td>
<td>Study stopped early due to differences in rate of intubation. Pre-hospital setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incidence of myocardial infarction</td>
<td>11/20 in NIPPV group v 2/20 (p=0.006)</td>
<td>Not analysed on basis of intention to treat. Small numbers with likely effect of underpowered study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SaO2, pulse and respiratory rates</td>
<td>Improvement significantly slower with NIPPV Control 2/18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mortality</td>
<td>Intubation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention 0/18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control 6/18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention 1/19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P=0.04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hospital stay</td>
<td>No significant difference between groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinical variables (for example, RR, HR, etc)</td>
<td>No difference at 60 mins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intubation</td>
<td>O2—4/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPAP—3/9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BiPAP—0/7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Death</td>
<td>O2—0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPAP—1 (day 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BiPAP—0</td>
<td></td>
</tr>
</tbody>
</table>
Corticosteroids in the management of near-drowning

Report by Bernard A Foex, Specialist Registrar
Checked by Russell Boyd, Consultant (Adelaide, Australia)

Clinical scenario
A 15 year old boy was playing in the local canal. He jumped off a small bridge and got his foot caught in an old shopping trolley on the bottom. He was pulled out but he was unconscious and apnoic. He was given BLS by the paramedics so that when he arrived in accident and emergency he was conscious, tachypnoeic, and centrally cyanosed. He had rhonchi and coarse crepitations in both lung fields. You wonder whether he would benefit from intravenous corticosteroids.

Three part question
In a case of [near-drowning], does the [use of corticosteroids] affect [outcome in terms of survival or pulmonary complications]?

Search strategy
Medline 1966 to 08/01 using the OVID interface. (Exp drowning/ or exp near drowning/ or “drowning”.mp) AND (exp steroids/ or “steroid”.mp OR exp adrenal cortex hormones/ or “adrenal cortex hormones”.mp OR exp methylprednisolone/ or “methylprednisolone”.mp OR exp hydrocortisone/ or “hydrocortisone”.mp OR exp dexamethasone/ or “dexamethasone”.mp OR exp prednisone/ or “prednisone”.mp). LIMIT to human AND English language.

Search outcome
Altogether 33 papers were identified by the search strategy. There were no prospective randomised placebo controlled trials but there was one prospective study. Four papers were retrospective analyses of case reports and included some data on the effects of corticosteroids. Another retrospective analysis was found from

Table 5

<table>
<thead>
<tr>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 fresh water near-drownings.</td>
<td>Prospective (?) No corticosteroid versus methylprednisolone (5 mg/kg/24 h divided into 6 equal doses).</td>
<td>Survival</td>
<td>All corticosteroid group survived, all others died.</td>
<td>Consecutive groups. Before and after study does not take account of potential change in other aspects of practice with time. Small numbers.</td>
</tr>
<tr>
<td>64 cases near-drowning, 29 cases drowning.</td>
<td>Retrospective analysis. Unspecified corticosteroid treatment.</td>
<td>Descriptive analysis</td>
<td>9 cases received corticosteroids = no benefit shown.</td>
<td>Retrospective. No standard treatment. Not a controlled trial.</td>
</tr>
<tr>
<td>98 near-drownings.</td>
<td>Retrospective analysis of charts.</td>
<td>No outcome measure as all were survivors</td>
<td>66 received unspecified corticosteroids.</td>
<td>Not a controlled trial. No deaths. Therefore a comparison of death rates impossible.</td>
</tr>
<tr>
<td>40 near-drownings.</td>
<td>Retrospective analysis of charts.</td>
<td>Survival</td>
<td>30 dexamethasone # number died</td>
<td>Retrospective. Not controlled trial. Variable doses, # data.</td>
</tr>
<tr>
<td>125 submersion victims.</td>
<td>Retrospective analysis of charts. Prednisolone (10.6 mg/kg, then 2.5 mg/kg/day; 1.8 d)</td>
<td>Pneumonia</td>
<td>Corticosteroids: no effect on pneumonia.</td>
<td>Not controlled trial. No survival data</td>
</tr>
</tbody>
</table>
the references. Of the remaining papers, nine were individual case reports or short series. All the others were irrelevant (table 5).

Comment(s)

All the case reports suggested that corticosteroids are of benefit in near-drowning.

The only prospective study included 10 patients. However, all seven of those given methylprednisolone (5mg/kg/24 hours IV divided into six equal doses) survived. All the other studies were retrospective analyses of case notes. None showed any benefit from corticosteroids, but they did not provide enough data about the corticosteroids used, the doses used, or specific outcomes to provide reliable evidence.

Case reports, which may be inherently biased, show some benefit, but there is no good evidence that the routine use of intravenous corticosteroids improves the outcome in cases of near-drowning. There may be a case for conducting a properly controlled trial to settle the issue.

Clinical bottom line

There is very little evidence on the value of giving intravenous corticosteroids in cases of near-drowning.

The Ottawa ankle rules in children

Report by Man-Cheuk Yuen, Senior Medical Officer

Checked by Fiona Saunders, Specialist Registrar

Clinical scenario

A 5 year old boy attends the emergency department after sustaining a twisting injury to his left ankle. On examination there is swelling and tenderness over the lateral malleolus. You know that the Ottawa ankle rules are applicable in adult patients and you wonder whether they are applicable in children too.

Three part question

In [paediatric patients with blunt ankle injuries] are [the Ottawa ankle rules] sensitive in [detecting fractures]?

Search strategy

Medline 1966–08/01 using the OVID interface. [exp ankle/ or ankle.mp. or exp ankle injuries/ or exp ankle joint/ or exp lateral ligament, ankle/] AND [clinical decision.mp. or exp Decision Support Systems, Clinical/ or exp Decision Support Techniques/ or ottawa.mp.] AND [pediatr$.mp. or paed$.mp. or exp Age Factors/ or age factors.mp. or Child/] LIMIT to human and english

Synopsis

All three included studies were case reports, which may be inherently biased. None showed benefit from corticosteroids, but two did not provide enough data about the corticosteroids used (table 6).

Comment(s)

Apart from Chande’s study, the other studies did not examine all patients with radiography. Therefore, fractures might be missed by the Ottawa ankle rules and unidentified because of the design of the study. It is anticipated that application of the Ottawa ankle rules in preschool children is difficult as the rules rely on their ability to report tenderness. However, the number of preschool children included in all these studies was small. Hence the role of...
the Ottawa ankle rules in small children is not yet answered.

Clinical bottom line

More work is required to determine if the Ottawa rules are applicable in children. Early results suggest that they will.

Belching as a symptom of myocardial ischaemia

Report by Jason Smith, **Specialist Registrar in Emergency Medicine**

Checked by Simon Carley, **Specialist Registrar in Emergency Medicine**

Clinical scenario

A 60 year old man attends the emergency department with chest pain. He also gives a history of belching since the onset of the pain. His initial ECG is normal. You wonder if the symptom of belching has any prognostic value in the diagnosis of cardiac chest pain, or is more suggestive of a gastrointestinal cause.

Three part question

In [patients with chest pain] is [belching a useful discriminatory symptom] of [myocardial ischaemia]?

Search strategy

Medline 1966 to 08/01 using the OVID interface. [(exp myocardial infarction OR myocardial infarction.mp OR MI.mp OR exp myocardial ischemia OR myocardial ischaemia.mp OR myocardial infarction.mp OR exp angina pectoris) AND (exp eructation OR eructation.mp OR belching.mp OR eructonesi-us.mp)] LIMIT to human and english.

Search outcome

Seven articles were found of which five were irrelevant or of insufficient quality. The two remaining papers are shown in the table.

Comment(s)

There are no randomised trials that answer the question. The best evidence would appear to come from two questionnaire studies, which show that belching is a symptom of myocardial ischaemia or infarction in a significant number of patients. It should not be assumed, therefore, that patients who have both chest pain and belching are more likely to be suffering from a non-cardiac cause.

Clinical bottom line

Belching is a recognised symptom of myocardial ischaemia or infarction.

Table 7

<table>
<thead>
<tr>
<th>Author, date and country</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darsee JR, 1978, USA</td>
<td>108 consecutive patients presenting to CCU</td>
<td>Questionnaire</td>
<td>Belching as a symptom in patients with confirmed inferior myocardial infarction</td>
<td>Sensitivity 69%, specificity 84% (no p value given)</td>
<td>Possible bias from direct questioning.</td>
</tr>
<tr>
<td>Logan RL, et al, 1986, NZ</td>
<td>227 consecutive patients presenting to CCU</td>
<td>Questionnaire</td>
<td>Belching as a symptom in patients with confirmed cardiac ischaemia</td>
<td>Positive predictive value of 72% (no p value given)</td>
<td>Possible bias from population chosen, that is, CCU admissions.</td>
</tr>
</tbody>
</table>

Skull fracture and intracranial injury in children

Report by Andrew Munro, **Specialist Registrar in Emergency Medicine**

Checked by Ian Maconochie, **Paediatric Consultant in Emergency Medicine**

Clinical scenario

Different emergency departments have different protocols/preferences in the way children with mild or minor head injury are investigated. Some prefer observation plus or minus plain skull radiographs, others use head scan as the first choice modality. The department you are currently working in uses plain radiology. You are concerned that in children with mild head injury with no abnormal neurology and no fracture seen on plain skull films there is a tendency to be falsely reassured that intracranial injury (ICI) is unlikely.

Three part question

In [children with minor head injury] does [absence of skull fracture] predict [absence of ICI]?

Search strategy

Medline 1985–08/01 using the OVID interface. [(exp brain injuries/ or exp craniocerebral trauma/ or exp head injuries, closed/ or head trauma.mp or head injur$.mp or exp skull fractures/ or skull fracture$.mp) AND (exp child/ or exp adolescence/ or exp child, abandoned/ or exp child, exceptional/ or exp child, hospitalized/ or exp child, institutionalized/ or exp child of impaired...
parents/ or exp child, preschool/ or exp child, unwanted/ or exp disabled children/ or exp homeless youth/ or exp infant/ or exp only child/ OR child$.mp or exp pediatrics/ or pediatrics$.mp or paediatric$.mp AND (exp tomography scanners, x-ray computed/ or exp tomography, x-ray computed/ or tomography.mp or CT scan$.mp) AND (exp prospective studies/ or prospective.mp or prospective.v$.mp) LIMIT to (human and English language and yr=1985–2001).

Search outcome
Altogether 194 papers were found, of which 187 were irrelevant or of insufficient quality to include. The remaining seven papers are shown in the table.

Comment(s)
Seven prospective papers were found. No consistent evidence exists to show that the presence or absence of skull fracture reliably predicts ICI. There is a suggestion that older children with skull fracture may have higher risk for ICI. Computed tomography was used to show isolated ICI (that is, fracture seen), in 4%–15% of children with mild head injury (GSC=13). The significance of ICI in this group remains unclear, 1%–3% have neurosurgery implying that missed ICI from mild head trauma can occasionally have severe consequences.

Clinical bottom line
The absence of skull fracture does not predict absence of ICI as seen on computed tomography. Computed tomography is therefore the imaging modality of choice if ICI is to be excluded in children with mild head injury.

Indication for head CT in children with mild head injury
Report by Andrew Munro, Specialist Registrar in Emergency Medicine
Checked by Ian Maconochie, Paediatric Consultant in Emergency Medicine

Clinical scenario
It is 9 pm on a Saturday, a 5 year old boy is brought to the emergency department by his mother after an unobserved fall on a trampoline. The mechanism is unclear but he was playing with an older boy. He was not thought to have cried immediately. He has a moderate sized contusion to his occiput but no focal neurology. He has a GCS of 14, opening his eyes to voice only. No skull fracture is identified on plain films. You consider it appropriate to use computed tomography on the basis of his GCS, scalp haematoma and the possibility of loss of consciousness. The on call radiologist thinks it more appropriate to admit for neurological observation. You are concerned that there is an incidence of intracranial injury (ICI) in this group, but have no data to support an argument for early head scanning.

Three part question
In [children who have sustained a mild or minor head injury with a GCS=13–15] do [clinical findings] predict [intracranial injury on computed tomography]?

Search strategy
Medline 1985–08/01 using the OVID interface. [(exp brain injuries OR exp cranioencephral trauma OR exp head injuries, closed) OR (head trauma.mp) OR (head injur$.mp)] AND [(exp adolescence OR exp child OR exp child of impaired parents OR exp child, abandoned OR exp child, exceptional OR exp child, hospitalized OR exp child, institutionalized, OR exp child, preschool OR exp child, unwanted OR exp disabled children OR exp homeless youth OR exp infant or exp only child or child$.mp) OR (exp pediatrics OR pediatric$.mp OR paediatric$.mp)] AND (exp tomography scanners, x-ray computed OR exp tomography, x-ray computed OR tomography.mp OR CT scan$.mp) AND (exp prospective studies OR prospective.mp OR prospectively.mp)] LIMIT to (human AND english language AND yr=1985–2001).

Search outcome
Altogether 194 papers were found of which five were considered relevant and of sufficient quality to include (see table 9).

Table 9
<table>
<thead>
<tr>
<th>Author, date and location</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teasdale GM et al, 1980,</td>
<td>Sub group in paper</td>
<td>Multicentred prospective comparative</td>
<td>Fully conscious and no skull fracture</td>
<td>16% of those with ICI</td>
<td>Incomplete data</td>
</tr>
<tr>
<td>Glasgow</td>
<td>of 98 head injured children requiring neurosurgery</td>
<td></td>
<td>0.5% of all attendees with head injury in this category</td>
<td></td>
<td>Not restricted to mild trauma</td>
</tr>
<tr>
<td>Dietrich AN et al, 1993,</td>
<td>All head trauma children scanned in 12</td>
<td>Prospective cohort</td>
<td>CT results</td>
<td>12% with ICI</td>
<td>Not restricted to mild trauma</td>
</tr>
<tr>
<td>USA</td>
<td>month period after 322, mean age of 7.1 years</td>
<td></td>
<td>Clinical factors</td>
<td>Amnesia for event highest sensitivity of 87%, LOC less sensitive at 68%. Absence of amnesia, LOC, focal neurology and headache >89% negative predictive value</td>
<td>Not clear if all head trauma seen was scanned</td>
</tr>
<tr>
<td></td>
<td>20% <2 years old & 62% male</td>
<td></td>
<td>M & M</td>
<td>5% of those with ICI had evacuation of haematoma. 13% died</td>
<td>Incomplete clinical data</td>
</tr>
<tr>
<td>Quayle KS et al, 1997, USA</td>
<td>322 ‘non-trivial’ head injuries</td>
<td>Prospective cohort</td>
<td>Imaging</td>
<td>8.4% had ICI</td>
<td>No available data on interventions required for those with minor head injury 410 children originally identified as ‘non-trivial’</td>
</tr>
<tr>
<td>Greene DS and Schutzman SA, 1999, USA</td>
<td>608 infants <2 years (11.2 +/- 6.8 months. 57% male) with head trauma</td>
<td>(selected CT scan)</td>
<td>CT result</td>
<td>5/6 had scalp haematoma. Four-fold increase of intracranial haematoma with skull fracture</td>
<td>Not restricted to mild trauma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinical factors in CT proven ICI</td>
<td>Half of those with ICI had no symptoms. Significantly more ICI in infants <3 months</td>
<td>Real rate of ICI injury on CT probably underestimated as only 31% had CT following pre-existing ED protocol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Age</td>
<td>93% of infants who were asymptomatic with ICI had scalp haematoma (77% of those with ICI overall)</td>
<td>GCS not given</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scapal haematoma</td>
<td>13% of infants with ICI had evacuation of haematoma</td>
<td>Not restricted to mild injury</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M & M</td>
<td>No deaths</td>
<td>Data not available for 52 patients</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Two week follow up</td>
<td>No CT’s ordered for those not imaged originally, no clinical deterioration for those who had a normal CT originally</td>
<td>No data on focal neurology</td>
</tr>
</tbody>
</table>

Wang MV et al, 2000, USA | 157 of 209 children with GCS of 13–14 as assessed by paramedic at scene transported to trauma centre and were CT scanned | Prospective multicentre | Head CT | 19.1% had ICI, half of whom had no skull fracture | No data available for 52 patients |
			Difference in GCS	No significant difference in ICI or skull fracture between GCS 13 and 14	Data not available for 52 patients
			Change in GCS	60% of those with ICI had an improvement in GCS on re-examination (uc >13)	No data on focal neurology
			Loss of consciousness	67% of those with ICI had no history of LOC	
			M & M	3.2% had haematoma evacuation, one of whom required long term rehabilitation. All lived	
Comment(s)
While no paper directly answered the question, five prospective studies clearly demonstrate ICI occurring in the absence of altered GCS and/or focal neurology. It is also clear that ICI occurs in children whose GCS has improved.

There seems to be no consistent linear relation between other clinical factors and predictability of ICI. Two papers showed that in infants who have no focal signs and no altered mental state the presence of significant scalp haematoma was an indication of increased risk of ICI. The full significance of ICI in asymptomatic head injured children is not clear however as many as one in six asymptomatic infants with ICI may be given neurosurgery.

Clinical bottom line
All head injured children who have a GCS of < 15 should undergo cranial CT. Asymptomatic infants who have head injury and a scalp haematoma should also undergo cranial CT.