Paracetamol overdose: an evidence based flowchart to guide management

C I Wallace, P I Dargan, A L Jones

A flowchart for the management of patients with paracetamol poisoning is presented to help clinicians in the emergency department.

Paracetamol is the commonest drug taken in overdose in the United Kingdom. While the management of early paracetamol poisoning is straightforward, the management of late presenting cases, cases presenting after a staggered overdose, and patients with risk factors for paracetamol poisoning can be much more complex. The authors have developed and present here an evidence based flowchart that will guide clinicians step by step through the investigation and treatment of all patients presenting to hospital after this common, but often difficult to manage overdose. As well as a management guideline this flowchart can be used as an educational tool.

BACKGROUND

Paracetamol is the commonest drug taken in overdose in the United Kingdom, accounting for 48% of all poisoning admissions to hospital and an estimated 100–200 deaths per year. However, junior doctors' knowledge about the management of paracetamol poisoning is poor. The management of patients who present early (less than 15 hours) after ingestion of a single paracetamol overdose is straightforward. If the patient has taken a potentially toxic dose of paracetamol, management is guided by the plasma paracetamol concentration; treatment with N-acetylcysteine in patients with a toxic plasma paracetamol concentration provides complete protection against paracetamol induced hepatotoxicity. However, when cases stray from this simple scenario (such as with staggered overdoses, patients with high risk factors for paracetamol poisoning, or late presentation), management decisions are more complex.

Current guidelines for paracetamol poisoning are based on the consensus recommendations of the UK National Poisons Information Service (NPIS), they have also been adopted by the Royal College of Paediatrics and Child Health as a Good Practice Consensus Statement. The guidelines have been circulated to all accident and emergency and general physicians. The authors have developed and present here an evidence based flowchart that will guide clinicians step by step through the management of both simple and complex paracetamol poisoning in a stepwise fashion.

METHODS

We conducted a literature search of Medline, Toxicology, and Embase using the terms “paracetamol” and “acetaminophen” with “intoxication”, “poisoning” and “overdose”. No language was barred and no other limitations were placed. The retrieved abstracts were reviewed and the most pertinent articles were reviewed in more detail. In addition, we took into account the consensus recommendations from the UK Toxicology Group (National Poisons Information Service (NPIS), Paracetamol Information Centre, and British Association of Accident and Emergency Medicine) on which the current UK guidelines for the management of paracetamol poisoning are based.

RESULTS

See figure 1 for the flowchart used to guide the management of patients with paracetamol poisoning, together with the supporting references from the literature.

The paracetamol flowchart is structured around a few crucial branches in the following order. Is the patient presenting after a single or staggered overdose? What is the time after ingestion? What are the results to the relevant investigations? Based upon the results of these questions, the clinician is guided through the appropriate steps in investigation and treatment of the paracetamol overdose. So that the flowchart can be used as a stand alone tool to guide patient management we have included the standard UK plasma paracetamol treatment nomogram, together with information boxes on risk factors for paracetamol poisoning, doses of N-acetylcysteine and management of adverse reactions to N-acetylcysteine.
Presentation

Some paracetamol preparations contain other agents such as opiates, salicylates, and caffeine. This flowchart deals only with management of the paracetamol component. The other agents need separate consideration.

If there is any doubt over the dose ingested, or time of ingestion, it is best to err on the side of caution and treat these variables as unknown.

Discharge the patient if sure of the dose ingested

< 75 mg paracetamol per kg

- Yes
 - Stop treatment
 - Continue with maintenance N-acetylcysteine at dose of 150 mg/kg over 24 hours

- No
 - Start treatment

Call National Poisons Information Service

- If there is any doubt over the dose ingested, treat the patient as if the dose is unknown.

- < 150 mg paracetamol per kg or unknown

- No

<table>
<thead>
<tr>
<th>Plasma paracetamol (mg/l)</th>
<th>< 100</th>
<th>100–120</th>
<th>120–140</th>
<th>140–160</th>
<th>160–200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours post-ingestion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check paracetol level result and plot on the treatment nomogram.

Discharge the patient if the level is above the high-risk treatment line.

High-risk treatment line – see treatment box.

Low-risk treatment line – see risk box.

Risk box

Some patients may be at risk of liver damage from lower levels of plasma paracetamol:

1. Regular alcohol consumption is excess of 21 units/week in males, 14 units/week in females.
2. Regular use of enzyme-inducing drugs (carbamazepine, phenobarbital, phenytoin).
3. Conditions causing glutathione depletion (malnutrition, HIV, eating disorders, cysts, renal failure).

If in doubt TREAT.

Start treatment with i.v. N-acetylcysteine (if sure of the dose ingested, treat the patient as if the dose is unknown).

Discharge the patient if sure of the dose ingested.

Contacting National Poisons Information Service:

- The telephone number for the National Poisons Information Service in your local centre will connect you to your local centre.

Duration N-acetylcysteine (if started) and discharge the patient.

Are you sure?

Yes

No

Are the lab tests abnormal?

Yes

No

How to contact your local centre:

- NHS 111
- Poisons Information Service

Treatment box

Adults

1. 150 mg/kg NAC in 200 ml 5% dextrose over 15 minutes followed by
2. 55 mg/kg NAC in 300 ml 5% dextrose over 4 hours followed by
3. 100 mg/kg NAC in 1000 ml 5% dextrose over 16 hours

Children

1. 150 mg/kg in 3 ml/kg 5% dextrose over 15 minutes followed by
2. 55 mg/kg in 7 ml/kg 5% dextrose over 4 hours followed by
3. 22.5 mg/kg in 14 ml/kg 5% dextrose over 6 hours

Adverse reactions to N-acetylcysteine (NAC) include:

- NAC can cause adverse effects which include flushing, itching, rash, hypotension, bronchospasm, and hypotension.
- NAC should be stopped and, if necessary, an intravenous antihistamine given.
- Once any adverse effects have settled, the NAC can be restarted at a rate of 50 mg/kg over 4 hours.

Indicators of severe paracetamol poisoning and when to contact a specialist liver centre:

1. Progressive encephalopathy or INR > 2 at 24 hours or INR > 4 at 48 hours, INR > 6 at 72 hours.
2. Renal impairment (creatinine > 200 µmol/l at 72 hours). Hypoglycaemia
3. Metabolic acidosis (pH > 7.3, bicarbonate < 18) despite hydration.
4. Hypertension despite fluid resuscitation.
5. Haemolysis.

Notes:

- All patients should be admitted to hospital.
- All patients should have blood tests.
- All patients should be observed for 48 hours.

Figure 1 Paracetamol overdose: a flowchart to guide management. [The numbers in superscripts relate to the supporting references].

Emerg Med J first published as 10.1136/emj.19.3.202 on 1 May 2002. Downloaded from http://emj.bmj.com/ on April 12, 2022 by guest. Protected by copyright.
DISCUSSION

Paracetamol remains the most common agent taken in overdose in the UK,1,4 but junior doctors’ knowledge about the management of paracetamol poisoning remains poor, despite the availability of UK guidelines as a poster in prose format.5,6 The management of paracetamol poisoning has been reviewed in detail elsewhere and these reviews complement our management flowchart for readers who wish to study the background literature in more detail.8,10

A study by Hardern et al5 showed that the management of paracetamol poisoning is improved if staff have access to guidelines, but found no difference between the performance of prose and flowchart formats. However, two further studies, one in the US14 and one in the UK,14 have shown that physicians prefer practice guidelines in the form of evidence based algorithms that are “user friendly”. The management of paracetamol overdose entails multiple steps in both investigation and treatment. We feel that the presentation of these management decisions in the algorithmic, flowchart format that we present means that each step in the process can be focused upon separately (whereas the entire body of prose guidelines may need to be assimilated before understanding the individual steps). The management flowchart deals with both the well defined early cases and more complex cases such as patients with risk factors for paracetamol poisoning, staggered overdoses, and late presenters.

This flowchart will guide physicians through the management of the majority of patients presenting with a paracetamol overdose from the time of presentation to hospital to the time that they are medically fit for discharge. There are however situations where further advice tailored to the management of an individual patient from either a clinical toxicologist at the National Poisons Information Service, or a hepatologist at a liver transplant unit may be required and this has been indicated on the flowchart. This particularly applies to patients presenting either after a staggered paracetamol overdose or later than 24 hours after a single paracetamol overdose, where both the efficacy and mechanism of action of N-acetylcysteine are controversial.7,37 Patients with established hepatotoxicity, with markers of severe toxicity outlined in the flowchart, such as coagulopathy, should be discussed early with a hepatologist, as meticulous supportive care is critical to a good outcome in such cases.7,35

CONCLUSION

Paracetamol is by far the commonest substance involved in self poisoning in the UK. While the management of early paracetamol poisoning is straightforward, the management of late presenting cases, cases presenting after a staggered overdose and patients with risk factors for paracetamol poisoning can be much more complex. We have developed an evidence based, easy to follow management guideline in the form of a flowchart that will guide clinicians step by step through the investigation and treatment of all patients presenting to hospital after a paracetamol overdose.

ACKNOWLEDGEMENT

The authors would like to thank Professor Laurie Prescott and Dr Alex Proudfoot for reviewing the flowchart and for their helpful comments.

Contributors

Craig Wallace and Paul Dargan were responsible for the literature review and designed the management flowchart. Alison Jones reviewed the literature review and the management flowchart. All three authors were involved in the writing of the paper and all three authors will act as guarantors.

Authors’ affiliations

C I Wallace, P D Dargan, A L Jones, National Poisons Information Service, Guy’s and St Thomas’ NHS Trust, London, UK

Conflicts of interest: AI has acted as an advisor to Glaxo Smith Kline, Cumberland Pharmaceuticals. Oxford Pharmaceuticals support the outreach educational activity of the London Centre of the National Poisons Information Service. AI and PD have acted as advisors to Orphan Drugs (Europe) and have received funding to attend meetings from Glaxo Smith Kline.

REFERENCES

www.emjonline.com
35 Eguia L, Matterson BJ. Acetaminophen-related acute renal failure without fulminant liver failure. Pharmacotherapy 1997; 17:363–70.
Diagnostic errors in an accident and emergency department

I commend the author for comprehensively involving a complex area but found some important pieces of information missing in the study. Firstly, there is no information regarding the total number of patients seen in the accident and emergency (A&E) department during the study period. This information would put into better perspective the number of patients (934) who had recorded diagnostic errors and would allow for more scientifically valid comparison of the findings of this study by other A&E departments. Secondly, there is no record of the number of cases where there was dispute over the diagnosis between A&E clinician and radiologist. Furthermore, it seems the author alone made the final decision regarding the diagnosis in such cases. This is a very subjective method of diagnosis with little scientific validity. Moreover, there is no information as to the specific diagnosis made and subsequent management of this group of patients. The management of this subset of cases is a dilemma for A&E clinicians and more information from the author on their management will be informative. Finally, hospital policy for reporting A&E radiographs changed during the study period. Did this have any effect on the number of diagnostic errors recorded? Data comparing the number of diagnostic errors before and after the change of policy to immediate reporting of radiographs would provide useful scientific evidence for radiologists to decide whether to give priority to A&E radiographs.

A Wakai
Department of Accident and Emergency Medicine, Beaumont Hospital, Dublin 9, Ireland

References

Author’s reply
I thank Dr Wakai for his comments. The total number of new patients seen over the four year period in which this study took place was 244,442. I have no record of the number of cases where there was dispute over the diagnosis between A&E clinician and radiologist, but the number was very small, and usually related to a radiology trainee rather than a consultant radiologist. The subsequent management of patients in whom diagnostic errors had been made was left to the individual consultant and I have no specific data on this but it obviously varied with the severity of the diagnostic error and the circumstances in which the error was discovered. Clearly, if the diagnostic error was discovered when the patient reattended the A&E department, or a follow up clinic, it was dealt with there and then, but if an error was discovered by a radiological report, probably most patients were sent an appointment to reattend one of the A&E clinics, though some patients would have been telephoned and asked to return immediately. For very minor errors, for example, minor avulsion fractures, the GP would have been informed that the patient would not have been advised to return.

The change in radiological reporting that occurred part of the way through the study was, of course, only one change that occurred over the four year period. There were also changes in staffing and as the idea behind the original collection of data was for continual quality improvement, the results of the study would only have required six months to changes in teaching, etc. For what it is worth, the incidence of diagnostic errors appeared to fall for the 12 months after the introduction of hot reporting, but subsequently rose again. It is difficult to attribute this completely to the change in radiological reporting. In addition, as the study notes, it proved very difficult to obtain details of every diagnostic error and the data are certainly incomplete. I am not sure that the conclusions on the effectiveness of changing the radiological reporting system based on incomplete data would be scientifically valid.

Dr Wakai rightly states that diagnosis based on the opinion of a single person is not valid. To this must be added the difficulties in defining diagnostic error and the incompleteness of the data. With a relatively low incidence of diagnostic errors, a study to accurately determine the incidence of these and to draw scientifically valid conclusions about their types, causes, etc, would require 100% follow up of many thousands of patients with all potential diagnostic errors being submitted to a panel to determine the exact diagnosis. Such a study would be very expensive and has never been done.

My study was, I hope, more than just “one consultant’s experience of diagnostic errors he has encountered”, as I actively tried to seek out all diagnostic errors as part of a quality improvement exercise. It must be regarded as a best attempt at determining all diagnostic errors for audit purposes but with no additional resources allocated. As such, I hope that it will be useful when discussing quality of service in A&E departments, but it did not accurately define every diagnostic error that occurred over the four year period.

H R Guly
Emergency Department, Derriford Hospital, Derriford, Plymouth, PL6 8DH, UK

Prehospital rapid sequence intubation

We read with interest the recent paper by Mackay and colleagues regarding the safety of prehospital rapid sequence induction by emergency physicians and would like to add our comments. We reviewed the charts of 65 of the patients as Cormack-Lehane 1 and 2 (95% compared with 81.5% in the emergency physician group) the anaesthetists were still using the gum elastic bougie more often (60.4% versus 51.0%). The use of the Cormack-Lehane scoring system is not necessarily predictive of intubation difficulty. Prehospital evaluation of intubation in France has showed that glottic exposure alone is an incomplete reflection of the difficulty encountered. In fact using a seven point scoring system, the influence of glottic visualisation was only moderate when assessing the subsequent degree of difficulty of intubation. Given that this is the case then should the use of an aid to intubation, such as the gum elastic bougie be part of the standard operating procedure for prehospital intubation? This may further reduce the number of repeat attempts at intubation, which the authors themselves comment as probably being under-reported in the study.

The authors also state that the laryngeal mask airway in pre-hospital care. This is surprising given that, as an airway adjunct, while not providing protection from gastric aspiration, it may be available to provide oxygenation in circumstances where the provision of a definitive airway may be difficult. Its potential role in the prehospital setting should not be overlooked.

P J Shirley, D Pogson
Intensive Care Unit, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia

References

Authors’ reply
We thank the authors of this letter for their comments. While we accept that simply grading the view at laryngoscopy is not the only factor predicting difficulty of intubation, it is convenient and well understood and may reflect potential problems. We agree that a gum elastic bougie should be used as a routine to aid prehospital intubation.
A laryngeal mask airway may certainly have a useful role as a backup device, but is not always easy to insert, particularly in the multiply injured patient requiring cervical stabilisation. Comparative studies are required to determine the best approach to a failed prehospital intubation.

C Kelly (Mackay), T Coats
Helicopter Emergency Medical Service, Royal London Hospital, Whitechapel, London, UK; cathy.kelly@hft.scot.nhs.uk

References

Intranasal naloxone for life threatening opioid toxicity
Heroin overdose is a major cause of death in Western countries. Many lives are saved by the administration of naloxone by emergency department and ambulance staff. In Australia, there have recently been calls by drug and alcohol dependence agencies and coroners for the extension of this treatment to other emergency service and community workers. General administration of naloxone however has some problems. It entails administration by way of an injection, mandating training of personnel and secure storage of equipment. There is also risk of transmission of blood-borne diseases such as hepatitis C to the treating person by way of needlestick injuries.

Currently available pharmacology data suggest that naloxone has high bioavailability through the nasal mucosa, with onset of action within two minutes, with a median of 50 seconds had return of adequate spontaneous respiration. Work in the field of drug addiction has shown that intranasal naloxone is effective in detection of opioid dependence 1 and is as effective as parenteral naloxone for the reversal of opioid effects. 2 To date, the intranasal administration of naloxone for the emergency treatment of opioid overdose has not been reported in the literature.

Six cases of isolated acute heroin overdose were treated with intranasal naloxone, in addition to ventilatory support, in the Department of Emergency Medicine of Western Hospital, Melbourne, Australia. All patients had return of adequate spontaneous respiration within two minutes, with a median of 50 seconds (table 1). Doses used ranged from 0.8 to 2 mg and were at the treating doctor’s discretion.

If intranasal administration of naloxone could be shown in larger series to be effective and practical, there is the potential to extend this treatment to a wide variety of community workers without the risk of needlestick injury and with minimal training. This may well translate into an increase in lives saved.

A prospective clinical trial comparing the effectiveness and safety of the intranasal route for administration of naloxone to the intramuscular route in the prehospital setting is planned to begin in December 2001.

A-M Kelly
Joseph Epstein Centre for Emergency Medicine Research and Department of Emergency Medicine, Western Hospital, Australia and The University of Melbourne, Australia

Z Koutsogiannis
Joseph Epstein Centre for Emergency Medicine Research and Department of Emergency Medicine, Western Hospital, Australia

Correspondence to: Professor A-M Kelly, Joseph Epstein Centre for Emergency Medicine Research, Western Hospital, Private Bag, Footscray 3011, Australia; Annet-Maree.Kelly@whh.org.au

References

Anti-D immunoprophylaxis within the accident and emergency department
The debate on anti-D prophylaxis rages on. Recently the subject was discussed in a green top guideline from the Royal College of Obstetricians and Gynaecologists. 1 There are still approximately 50 deaths per annum attributable to rhesus isoimmunisation in the UK. In reviewing the reasons why these deaths still occur, the Consensus Conference on Anti D in 1997 admitted that the 1991 Recommendations are not being adhered to by all units and that a substantial proportion of accident and emergency (A&E) departments did not administer anti-D when appropriate (Consensus Conference on Anti-D Prophylaxis, Edinburgh, UK 8–9 April, 1997). The conference discussed but did not conclude on the need for anti-D prophylaxis where threatened miscarriage and resolution occurs in the first trimester, or when spontaneous miscarriage occurs at this time without instrumentation. The College guidelines go further in advocating non-use of anti-D when pregnancy bleeding occurs in the first trimester with a viable fetus and supports the use of anti-D when “bleeding is heavy or repeated, when abdominal pain is present or when gestation approaches 12 weeks”.

There is a need here for more precision. Many SHOs in A&E have limited gynaecological experience and under the new guidelines will be expected to determine which patients require anti-D.

Furthermore, the present recommendation for non-use of anti-D has been largely on observational studies. Grade C recommendation. In this era of evidence based medicine this is sufficient basis for a change in policy.

In the past anti-D immunoprophylaxis was routinely given to all rhesus negative women with early pregnancy bleeding. This has not been shown so far to be significantly associated with adverse side effects and the cost implications are not prohibitive.

Perhaps the way forward is shown in a more recent RCOG guideline, on the management of early pregnancy loss. 2 The same dilemma is dealt with in a caveat “if there is clinical doubt then anti D should be given”. Until more conclusive information is to hand, rather than obfuscating the issue, a return to a policy of administering anti-D to all rhesus negative women with early pregnancy bleeding seems a more plausible option.

M J Kavanagh, T Dada
Accident and Emergency Obstetrics and Gynaecology Departments, St James’s University Hospital, Beckett Street, Leeds LS 7 1TF, UK

References
1 Royal College of Obstetrics and Gynaecology Guidelines. Use of anti-D immunoglobulin for Rh prophylaxis. 2000 [www.rcog.org.uk/guidelines/antid.html]

Teaching and learning
We read with interest the paper by Dr Lockey describing the different learning approaches that may be taken by students. 1 We are aware that the field of educational psychology is woolly and littered with many definitions and it may be difficult to give a brief overview of learning approaches. The author has made a valid point in suggesting that as doctors we are expected to teach but are rarely trained in the teaching process. The author goes on to describe how there are essentially two learning approaches adopted by students: “surface” and “deep”. We are then told how deep learning is superior to surface and that as educators we should attempt to promote deep learning.

This is fine. However, Dr Lockey has made an important omission in his paper. The author has failed to describe a third and very important learning approach. That is the “strategic” approach as described by Miller and Portlett. 2

The strategic learner is a success driven person who approaches the learning process as a game where a high mark is the end point. These people will focus only on what they perceive to be relevant to exam success and disregard additional information. They may attempt exam prediction or even attempt to obtain inside information from authority figures. This approach results in poor long term recall and patchy subject knowledge. McNamur et al have shown that medical students with the most clinical experience do not perform best in final exams but deep and strategic approaches do correlate well with exam success. 3 The worry here is that as medical students these people may flourish in exams but as clinicians lack the knowledge base or understanding to work safely or effectively.

R McLaughlin
Emergency Department, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, UK

R Bell
Radiology Department, Royal Victoria Hospital

References

Table 1

<table>
<thead>
<tr>
<th>Patient</th>
<th>Dose IN</th>
<th>Time to spontaneous respiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8 mg</td>
<td>40 seconds</td>
</tr>
<tr>
<td>2</td>
<td>1.6 mg</td>
<td>2 minutes</td>
</tr>
<tr>
<td>3</td>
<td>1.6 mg</td>
<td>30 seconds</td>
</tr>
<tr>
<td>4</td>
<td>2 mg</td>
<td>1 minute</td>
</tr>
<tr>
<td>5</td>
<td>1.6 mg</td>
<td>90 seconds</td>
</tr>
<tr>
<td>6</td>
<td>0.8 mg</td>
<td>30 seconds</td>
</tr>
</tbody>
</table>

www.emjonline.com
Factitious hypoglycaemia in hypotension

Capillary blood glucose evaluation is routinely performed on patients presenting to the accident and emergency department. However, the limitations of this test are not widely known. We recently cared for a shocked patient who was hypoglycaemic (capillary glucose 1.3 mmol/l, venous laboratory glucose 2.3 mmol/l) on presentation. He was treated with repeated boluses of intravenous glucose and a single dose of intravenous glucagon (1 mg) as capillary blood samples remained hypoglycaemic. With continued resuscitation a further venous glucose sample revealed his formal blood sugar to be increased (30.8 mmol/l) while capillary levels were still in the hypoglycaemic range (1.8 mmol/l). We were unaware of the possibility of inaccuracy in this situation and discussion with colleagues revealed a similar lack of awareness.

Atkin et al showed in a prospective study of hypotensive (systolic blood pressure <80) patients in the emergency department that 32% of patients were incorrectly diagnosed as hypoglycaemic by finger stick measurements. Indeed, on laboratory measurement of venous samples, two patients were hyperglycaemic. They recommended that venous blood samples measured with glucose reagent strips should be the preferred method of bedside blood glucose estimation in hypotensive patients as these results were comparable to laboratory values. The reason for the discrepancy between capillary blood glucose measurements and venous blood glucose measurements remains unclear. It has been proposed that, in the shocked patient, both peripheral vasoconstriction causing shunting of blood from the periphery and continued peripheral consumption lead to decreased capillary blood glucose concentrations.

While the risks of hypoglycaemia are widely appreciated, it is becoming increasingly recognised that hyperglycaemia is not desirable and may indeed worsen outcome. The mechanism involved is uncertain but is probably related to increased cellular lactic acid production.

Hypotension is frequently encountered in acutely ill patients and the limitations of a routinely used test need to be recognised and highlighted.

A MacDuff, I S Grant
Western General Hospital, Crewe Road South, Edinburgh EH4 2JU, UK

References

CORRECTION
An editorial error occurred in this article by Dr Wallace and others (2002;19:202–5). In the flowchart, along the staggered overdose pathway, all doses should be described on a dose/kg/day and not a dose/kg basis. Also, patients who present after a paracetamol overdose with an unknown quantity of paracetamol should definitely be treated as though they may have taken a potentially hepatotoxic dose. The correct version of the flowchart is available on the journal web site (www.emjonline.com).
Presentation
Some paracetamol preparations contain other agents such as opiates, salicylates and caffeine. This flowchart deals only with the management of the paracetamol component. The other agents need separate consideration.

If there is ever any doubt over either the dose ingested, or time of ingestion it is best to err on the side of caution and to treat these variables as ‘unknown’.

Figure 1 - Paracetamol Overdose: a flowchart to guide management
(The numbers in superscripts relate to the supporting references)

Risk box
Some patients may be at risk of liver damage from lower levels of plasma paracetamol.
1. Regular ethanol consumption in excess of 21 units/week in males, 14 units/week in females
2. Regular use of enzyme-inducing drugs (carbamazepine, phenytoin, phenobarbitone, rifampacin)
3. Conditions causing glutathione depletion (malnutrition, HIV, eating disorders, cystic fibrosis)

Dose taken?

- **<75mg paracetamol per kg**
 - **When taken?**
 - **<1 hour**
 - 50g charcoal orally (1g/kg bodyweight in children)
 - **1-4 hours**
 - Wait until 4 hours post-ingestion
 - **4-8 hours**
 - Take blood for paracetamol level
 - **8-24 hours**
 - Start treatment with i.v. N-acetylcysteine
 - See treatment box for doses.
 - **>24 hours**
 - Take blood for paracetamol level, INR, LFT’s, creatinine and venous bicarbonate (if bicarbonate abnormal then check arterial blood gases)

- **≥75mg paracetamol per kg or unknown**
 - **Is the patient at risk? See risk box**

Single or staggered overdose?

- **Single**
 - **<150mg paracetamol per kg**
 - **When taken?**
 - **<1 hour**
 - 50g charcoal orally (1g/kg bodyweight in children)
 - **1-4 hours**
 - Wait until 4 hours post-ingestion
 - **4-8 hours**
 - Take blood for paracetamol level
 - **8-24 hours**
 - Start treatment with i.v. N-acetylcysteine
 - See treatment box for doses.
 - **>24 hours**
 - Take blood for paracetamol level, INR, LFT’s, creatinine and venous bicarbonate (if bicarbonate abnormal then check arterial blood gases)
 - **≥75mg paracetamol per kg or unknown**
 - **When taken?**
 - **<1 hour**
 - 50g charcoal orally (1g/kg bodyweight in children)
 - **1-4 hours**
 - Wait until 4 hours post-ingestion
 - **4-8 hours**
 - Take blood for paracetamol level
 - **8-24 hours**
 - Start treatment with i.v. N-acetylcysteine
 - See treatment box for doses.

- **Staggered**
 - **<150mg paracetamol per kg**
 - **When taken?**
 - **<1 hour**
 - 50g charcoal orally (1g/kg bodyweight in children)
 - **1-4 hours**
 - Wait until 4 hours post-ingestion
 - **4-8 hours**
 - Take blood for paracetamol level
 - **8-24 hours**
 - Start treatment with i.v. N-acetylcysteine
 - See treatment box for doses.
 - **>24 hours**
 - Take blood for paracetamol level, INR, LFT’s, creatinine and venous bicarbonate (if bicarbonate abnormal then check arterial blood gases)
 - **≥75mg paracetamol per kg or unknown**
 - **When taken?**
 - **<1 hour**
 - 50g charcoal orally (1g/kg bodyweight in children)
 - **1-4 hours**
 - Wait until 4 hours post-ingestion
 - **4-8 hours**
 - Take blood for paracetamol level
 - **8-24 hours**
 - Start treatment with i.v. N-acetylcysteine
 - See treatment box for doses.

When taken?

- **<1 hour**
 - 50g charcoal orally (1g/kg bodyweight in children)
- **1-4 hours**
 - Wait until 4 hours post-ingestion
- **4-8 hours**
 - Take blood for paracetamol level
- **8-24 hours**
 - Start treatment with i.v. N-acetylcysteine
 - See treatment box for doses.
- **>24 hours**
 - Take blood for paracetamol level, INR, LFT’s, creatinine and venous bicarbonate (if bicarbonate abnormal then check arterial blood gases)

Discharge the patient if sure of the dose ingested

- **<75mg paracetamol per kg per day**
 - **8**
 - **≥75mg paracetamol per kg per day or unknown**
 - **8,11,20,21**
 - **≥150mg paracetamol per kg or unknown**
 - **8,11,20,21**

Call National Poisons Information Service

Discharge the patient if sure of the dose ingested

- **<75mg paracetamol per kg per day or unknown**
 - **8,11,20,21**
 - **≥75mg paracetamol per kg per day or unknown**
 - **8,11,20,21**

Unknown

- **<75mg paracetamol per kg per day or unknown**
 - **8,11,20,21**
 - **≥75mg paracetamol per kg per day or unknown**
 - **8,11,20,21**
Check paracetamol level result and plot on the treatment nomogram 8,9,37,44,45

Is the patient symptomatic or are the lab tests abnormal?

Check INR, creatinine and venous bicarbonate results (if bicarbonate abnormal then check arterial blood gases) 31-36

Start treatment with i.v. N-acetylcysteine (see treatment box for doses), if not already started. Call the National Poisons Information Service

Are the lab tests abnormal?

Discharge the patient 10,23

Discontinue N-acetylcysteine (if started) and discharge the patient 10,23

Are you sure?? If in doubt TREAT 12

Check paracetamol level result and plot on the treatment nomogram 8,9,37

Are the lab tests abnormal?

Is the paracetamol level above the treatment line or are lab tests abnormal?

Start or complete treatment with i.v. N-acetylcysteine 9,12

See treatment box for doses

On completion of N-acetylcysteine recheck INR, creatinine and venous bicarbonate (if bicarbonate abnormal then check arterial blood gases) 31-36

Start treatment with i.v. N-acetylcysteine (see treatment box for doses).

Are the lab tests abnormal?

Discharge the patient 10,23

Contacting the National Poisons Information Service:
The telephone number for the National Poisons Information Service is 0870 600 6266 - this will connect you to your local centre.

Treatment Box
Dosage of Intravenous N-acetylcysteine (NAC)

Adults
1. 150mg/kg NAC in 200ml 5% dextrose over 15 minutes followed by
2. 50mg/kg NAC in 500ml 5% dextrose over 4 hours followed by
3. 100mg/kg NAC in 1000ml 5% dextrose over 16 hours

Children
1. 150mg/kg in 3ml/kg 5% dextrose over 15 minutes followed by
2. 50mg/kg in 7ml/kg 5% dextrose over 4 hours followed by
3. 100mg/kg in 14ml/kg 5% dextrose over 16 hours

Indicators of severe paracetamol poisoning and when to contact a specialist liver centre:
1. Progressive coagulopathy, or INR > 2 at 24hrs, INR > 4 at 48hrs, INR > 6 at 72hrs.
2. Renal impairment (creatinine > 200µmol/l)
3. Hypoglycaemia
4. Metabolic acidosis (pH < 7.3, bicarbonate < 18) despite rehydration
5. Hypotension despite fluid resuscitation
6. Encephalopathy