Whiplash associated disorders: a review of the literature
to guide patient information and advice
T McClune, A K Burton, G Waddell

Objectives: To review the literature and provide an evidence based framework for patient centred information and advice on whiplash associated disorders.

Methods: A systematic literature search was conducted, which included both clinical and non-clinical articles to encompass the wide range of patients’ informational needs. From the studies and previous reviews retrieved, 163 were selected for detailed review. The review process considered the quantity, consistency, and relevance of all selected articles. These were categorised under a grading system to reflect the quality of the evidence, and then linked to derived evidence statements.

Results: The main messages that emerged were: physical serious injury is rare; reassurance about good prognosis is important; over-medicalisation is detrimental; recovery is improved by early return to normal pre-accident activities, self exercise, and manual therapy; positive attitudes and beliefs are helpful in regaining activity levels; collars, rest, and negative attitudes and beliefs delay recovery and contribute to chronicity. These findings were synthesised into patient centred messages with the potential to reduce the risk of chronicity.

Conclusions: The scientific evidence on whiplash associated disorders is of variable quality, but sufficiently robust and consistent for the purpose of guiding patient information and advice. While the delivery of appropriate messages can be both oral and written, consistency is imperative, so an innovative patient educational booklet, The Whiplash Book, has been developed and published.

Whiplash injuries and in particular the development of chronic pain and disability, are an increasing clinical and social problem. During treatment, clinicians typically provide patients with some information and advice but its format, content, and possible value vary considerably.

The concept of evidence based health care has fostered an increasing interest in patient information. The quantity of patient information material, covering most medical conditions, is now vast and available in multi-media format including pamphlets, books, videos, and internet sites. However, this material is of widely varying quality, much of it simply representing the views of individuals or interest groups without any firm evidence base. The Toronto Statement on the Relationship Between Communication and Practice and Outcomes recognised that: communication problems in medicine are both important and common; suitable explanations can diminish anxiety and psychological distress; the quality of information is related to positive health outcomes. There is emerging evidence that appropriate written material can be an effective component in the management of musculoskeletal conditions, while poor information, or misinformation, can adversely affect health behaviour and health outcomes.

The Quebec Task Force (QTF) on whiplash associated disorders (WAD), suggested that information is an essential part of an active management approach. It recommended that information should focus on the self limiting nature of WAD, and include advice to return to normal activities as soon as possible. However, it did not consider how that advice should be imparted. The British Columbia Whiplash Initiative (BCWI) made similar recommendations and presented sample scripts for delivering realistic oral reassurance. Neither QTF nor BCWI offered specific recommendations on written patient information, yet it may be inferred that written material could be used to supplement oral advice.

In a survey of 110 NHS accident and emergency departments in UK (A Auty, unpublished data), 29 provided examples of advice sheets, leaflets, and booklets that they offered to patients with WAD while 12 specifically indicated they did not use any. Eighteen of the 29 were commercially produced advice cards bearing the name and contact number of a local solicitor. The advice was generally not evidence based and did not target the fundamental issues identified by QTF and BCWI. The same was true of internet sources.

Patients want to understand the nature of their injury and its prognosis, as well as how best to manage their pain and reduce disability. Similarly, clinicians need to have and convey confidence in any advice they give. The present evidence review was conducted to provide a scientific framework for patient centred information with the potential to reduce the risk of chronicity in WAD. Specifically, the results were to be used to develop messages for an evidence based patient educational booklet, and to foster consistent oral advice. This focus guided the scope and methodology of the review.

METHODS
The QTF report published in 1995 provided the first and most widely known, comprehensive literature review and recommendations on WAD. The BCWI in 1997 developed a teaching package and guidelines for health care professionals, based on the QTF findings. The reports from the QTF and the BCWI were used as the logical starting points for the present review.

Medline and psycINFO were searched from 1994 through October 2001, using combinations of keywords (whiplash, neck pain, treatment, biomechanics, education) relevant to the whole whiplash phenomenon. This was supplemented by searches on the internet, searches of personal databases, and citation tracking. All aspects of WAD were considered, including clinical and non-clinical studies on QTF Grades 0-III.

Abbreviations: WAD, whiplash associated disorders; QTF, Quebec Task Force; BCWI, British Columbia Whiplash Initiative
Grade IV (fracture or dislocation) and surgical interventions were excluded. Initially, abstracts of the retrieved articles were screened by one of the authors for their general content; full papers were obtained for those that appeared applicable. Acceptable studies and reviews were then selected as those that presented information relevant to the management and treatment of whiplash, together with selected articles covering epidemiology, mechanisms of injury, and social policy. Articles not pertinent to the development of patient information, or that did not add to the understanding of injury mechanisms or management in WAD, were excluded. In some areas (notably patient education) the whiplash literature was seriously lacking, so background evidence was taken from selected papers in other musculoskeletal conditions. In addition to the formal search, a few papers published in the last two months of 2001, which were especially relevant to the objectives of the review, were included.

A full systematic review methodology in such a multidisciplinary field would be impracticable and inappropriate, so an alternative strategy had to be adopted. This was based on a qualitative evaluation of the available scientific evidence in each relevant field for its appropriateness for developing patient information. Included articles were scrutinised and the pertinent information extracted; extensive discussion, reiterative drafting, and consensus between the three reviewers resulted in the synthesis of evidence statements reflecting the evidence currently available, while recognising the limitations of that evidence in many areas. Evidence statements were categorised under a number of headings: biomechanics, epidemiology, clinical, investigation, psychology, theoretical models, treatment, education, and social policy (though inevitably there was some overlap between these headings). The strength of the evidence for each statement was then rated qualitatively on its quantity, quality, and consistency by consensus between the three authors:

- **Consistent**: Generally consistent findings in multiple studies (albeit of variable scientific quality).
- **Balance**: Balance of available evidence (including existing reviews).
- **Limited**: Limited or weak scientific evidence.

Thus, the literature review may best be summarised as systematic searching of the published scientific literature with a qualitative evaluation of the quantity, consistency, and relevance of the evidence as the basis for patient information and advice on WAD.

RESULTS

One hundred and sixty three papers were included in the review and examined in detail. Table I lists the evidence statements (with identifying letters) together with a rating of the evidence and links to the references.

The QTF found very little scientifically admissible data. Having examined all material published since 1994, we feel this is, by and large, still the case. Published studies frequently differ significantly in their inclusion/exclusion criteria and differing outcome measures, although there were some notable exceptions. In view of the limitations of the scientific evidence we believe, in common with the QTF, that a “best evidence synthesis” is appropriate, and our findings show this can provide a useful overview that highlights areas where there is a reasonable degree of consistency.

Biomechanics

Biomechanical considerations give some insight into the likelihood of injury, the tissues involved, and the severity of injury. Consistent evidence from both in vitro and in vivo studies suggest that a whiplash type injury can result in tissue injury to various spinal structures; potentially affecting the intervertebral discs, zygapophyssial joints, ligaments and muscles (see table 1: B1, B6, B7). The majority of whiplash injuries probably involve predominantly muscles and ligaments, resulting from direct stretching or neuromuscular reflex contractions (B2).

Many road traffic accidents involve quite low acceleration perturbations, which are similar to other daily living/sport activities (B5). Consistent findings indicate that relatively low velocity changes can be associated with tissue damage, with the threshold suggested to be 10–15 km/h (B3); yet claims may be made for symptoms resulting from accidents with even lower velocity changes (B4). The direction of impact has an influence: for similar vehicle masses, a higher velocity change is required for tissue damage in a front impact or side impact compared with a rear impact, and a poorer prognosis is likely if the neck is rotated or side bent at the time of impact (B9). There is considerable interest in the influence of head restraints on the effects of injury: theoretically head restraints can reduce the incidence and severity of WAD; there is some consensus that the optimum position for a head restraint is close to and level with the head (B8).

Epidemiology

Data from different countries suggest that recovery rates from WAD differ, probably depending on social and cultural influences. In cultures of low therapeutic involvement and no litigation, symptoms are short lived with little or no link to chronicity (E6). While there has been criticism of the methodology of these studies, the published data are largely consistent. The prevalence of chronic neck pain after a whiplash injury is very similar to the prevalence of chronic neck pain in the general population (E1), making it difficult to determine if persisting symptoms are directly related to the injury or are simply a reflection of the high prevalence of non-specific neck symptoms in the population at large. From an epidemiological perspective, it is clear that those with continuing symptoms three months after the accident are likely to remain symptomatic for at least two years, possibly much longer (E2). As with other chronic musculoskeletal disorders, people with chronic WAD typically have a high level of multiple complaints (E3). A poorer prognosis has been suggested for certain factors, although the quality of the evidence and the effect size varies: female sex, older age, a high level of symptom severity at onset, pre-traumatic headache, a greater number of symptoms, and pre-existing degenerative changes on radiograph (E4). There is limited evidence on an increased level of symptoms after a second whiplash injury (E5).

Clinical history and examination

There is conflicting evidence on the value of physical examination in the clinical setting. While a clinical history and physical examination are important to establish the WAD grade (and to identify or exclude more serious injuries), the findings do not pinpoint sources of pain and are not closely related to prognosis (C1). The most common presenting symptoms are, in descending frequency: neck pain, neck stiffness, headache, low back pain, shoulder pain, and visual disturbance/dizziness (C4), while generalised hyperexcitability and central nervous system sensitisation has been described in a number of studies of patients with chronic WAD (C6). There is persuasive evidence that the clinical outcome at two years can be predicted at three months. It seems that patients who are symptomatic after three months will remain so after two years or more, although their symptoms will fluctuate during this period. The two year outcome can be predicted with an 82% success rate using a combination of psychological score and neck stiffness assessed at three months (C2). There is consistent evidence that non-collision factors are important in the development of chronic symptoms (including fibromyalgia), emphasising the role of
psychological and cultural factors (C3), and there is considerable individual variability in terms of response to the accident itself and any resultant symptoms (C5).

Investigations

According to QTF and BCWI, imaging is unnecessary in Grade 0-I, but should be performed for Grade II-III to exclude possible fracture or dislocation; though it was accepted that incidental findings unrelated to the injury can be highlighted unnecessarily. More recently, it has been suggested that the extent of radiography could safely be reduced substantially through simple clinical screening, thus limiting unnecessary investigation and consequent costs (In4). The present review suggests that an MRI scan is generally not necessary for Grades 0-II, and probably only helpful for Grade III if surgery is being considered (In1). MRI scans will reveal a high number of abnormalities, particularly age related changes, in symptom free individuals as well as patients (In2). Conversely, while a high level of abnormalities on MRI has been associated with a poorer prognosis in WAD patients, these abnormalities are most commonly degenerative changes not specifically related to the neck injury (In3).

Psychology

A whiplash injury can certainly trigger emotional and cognitive changes, including travel anxiety, post-traumatic stress disorder, depression, fear of movement, catastrophising, sleep disturbance, and lower levels of concentration (P1, P6). These psychological changes, resulting either from the accident or from the subsequent symptoms and disability, develop secondarily during the first three months after the accident, and do not imply that the pain is psychogenic (P2). When present, psychological factors have a significant detrimental effect on outcomes (including return to work), and recovery tends to parallel psychological improvement (P6, P7). Chronic WAD patients may exhibit inaccurate expectations and amplification of symptoms; they may attribute their entire symptom pattern directly to the road accident, thus contributing to a perpetuation of their problem (P3). Specific coping strategies (active problem solving and perceived confidence in ability to complete daily activities) may be helpful (P5).

Models

Numerous models have been proposed to explain WAD. It is generally accepted that the biopsychosocial model can explain many clinical and epidemiological findings in WAD (M1). Accepting an injury event does occur, there is clear evidence for a biological component in the acute presentation (M2). The evidence suggests, however, that the development of chronic symptoms is influenced more by psychological, social, or cultural factors (M3, E6). More controversially, it has been argued that evidence for the construct validity of a causal link between the trauma mechanism and chronic symptoms is sparse, and that whiplash can be conceptualised as being a risk factor for cervical symptoms rather than representing a discrete disease entity (M4).

Treatment

It has been shown consistently in randomised controlled trials that an early active management strategy is most effective for WAD patients (Grade 1 to III) (T2). This includes return to pre-accident activities as soon as possible (T1), analgesic medication to control symptoms and permit increased activity levels (T4), and prescription of neck specific exercises (T7). Manual therapy (T6), and psychosocial interventions (including cognitive behavioural therapy) may be helpful, particularly for achieving early activation (T5). Collars, rest, and passive physical modalities are generally unhelpful (T3, T8). While the use of a soft collar can ease acute symptoms there may be a risk of promoting illness behaviour, especially if used beyond 72 hours (T3). Ill directed and blanket treatment approaches seem likely to contribute to chronic symptoms (T9). Radiofrequency neurotomy can be considered for chronic symptoms (T10), but the relation between those symptoms and the injury may be uncertain (E1). There is limited evidence for the effectiveness of antidepressants in WAD (T11).

Education

There is general consensus that appropriate information and advice is important (Ed1); while there is little information on educational interventions specifically for WAD, there is persuasive evidence from other musculoskeletal literature. It is known that patients want and seek information on health issues (Ed2), and it is important that that information is easy to read, understandable, acceptable, authoritative, believable, and contains practical advice (Ed3). Patients appreciate and retain knowledge from health educational booklets (Ed4); evidenced based patient education (particularly for low back pain) has been shown to have some effect in creating positive shifts in beliefs, improving clinical outcomes, and reducing work loss (Ed4). To counter negative cultural influences on recovery and inconsistent advice given by health care professionals, early delivery of evidenced based information may be optimal for assisting the return to normal activities (Ed4).

Social policy

The literature showing national and geographical differences in symptom reporting and recovery rates for WAD imply that social factors exert an influence on symptomatology and disability (S1). There is limited evidence to suggest that cultural over-medicalisation may contribute to ill health behaviour (S2). Other potential social effects will be outside the control of health care, and involve legal and statutory bodies. Whiplash injuries represent a substantial cost to society, much of which is accounted for by cases lasting over six months (S3); there is therefore a logical basis for early intervention strategies to reduce the significant individual and societal costs.

DISCUSSION

The important sources of guidance for the management of whiplash (QTF, BCWI) recommend that patients be given reassuring information and advice. The results of this review support that position, and provide a stronger evidence base that active management strategies should have a beneficial influence on outcomes (table 1).

The limitations of this review, its methodology, and the available evidence must be recognised. The literature was searched systematically but, as already emphasised, a proper systematic review methodology was impractical and inappropriate. This was mostly because of the aims and scope of the review, and the range of material included, which was far beyond the randomised controlled trials for which the standard systematic review methodology is designed. Adherence to strict methodological criteria would have excluded much valuable information important to patients and their clinical management. The scope of the review and the criteria for rating the evidence were set to maximise the information available in an area not characterised by high quality studies. In common with QTF, a “best evidence synthesis” seemed the most profitable method for extracting appropriate patient centred messages. In the event, while some areas of the whiplash literature are clearly lacking good scientific evidence, there is a high level of consistency and consensus in many of the areas most pertinent to patient education. There remains, though, a clear need for randomised controlled trials to inform on specific treatment/management protocols, and their optimal timings.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Evidence statement</th>
<th>Rating</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomechanics</td>
<td>B1 Forces involved in road traffic accidents can be sufficient to potentially damage spinal structures, intervertebral discs, zygapophysial joints, muscles, ligaments.</td>
<td>C</td>
<td>9 10 11 12 13 14 15 16 17 18 19 20</td>
</tr>
<tr>
<td></td>
<td>B2 Most whiplash injuries involve only the soft tissues.</td>
<td>C</td>
<td>21 22 23 24</td>
</tr>
<tr>
<td></td>
<td>B3 The threshold for tissue damage is a change in velocity of the order of 10-15 km/h (acceleration levels of around 3-4 g).</td>
<td>C</td>
<td>20 25 26 27</td>
</tr>
<tr>
<td></td>
<td>B4 The threshold for symptom generation is a change in velocity of the order of 4-8 km/h.</td>
<td>B</td>
<td>14 28 29</td>
</tr>
<tr>
<td></td>
<td>B5 Acceleration perturbations of daily living can be greater than those in some vehicle accidents.</td>
<td>L</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>B6 In some cases, compression may be the most significant force affecting the zygapophysial joints; zygapophysial joints may be important in understanding chronic symptoms.</td>
<td>C</td>
<td>12 15 19 31 32 33</td>
</tr>
<tr>
<td></td>
<td>B7 Biomechanical analyses should include in vivo studies in order to take account of muscle forces.</td>
<td>B</td>
<td>34 35 36 37</td>
</tr>
<tr>
<td></td>
<td>B8 Head restraint influences the type and severity of injury.</td>
<td>B</td>
<td>38 39 40 41 42 43 44 45</td>
</tr>
<tr>
<td></td>
<td>B9 Head rotated or side-bent at time of injury predicts a poorer prognosis.</td>
<td>C</td>
<td>46 47 48 36</td>
</tr>
<tr>
<td></td>
<td>B10 Acceleration of muscle forces may be the most significant force affecting the zygapophysial joints; zygapophysial joints may be important in understanding chronic symptoms.</td>
<td>C</td>
<td>1 21 93 13 23 3</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>E1 Chronic symptoms after whiplash have similar prevalence to chronic neck pain in the general population.</td>
<td>C</td>
<td>49 50</td>
</tr>
<tr>
<td></td>
<td>E2 Symptom status at three months predicts status at 2 years (or more). -module</td>
<td>C</td>
<td>51 52 53</td>
</tr>
<tr>
<td></td>
<td>E3 High prevalence of multiple complaints in those with chronic WAD.</td>
<td>C</td>
<td>54 55</td>
</tr>
<tr>
<td></td>
<td>E4 Higher risk of persisting symptoms in some groups: eg, women, older patients, high level of symptoms at onset, high prevalence of pre-traumatic headache, greater number of symptoms, degenerative changes on radiography.</td>
<td>C</td>
<td>46 56 57 58 59 60 61 62</td>
</tr>
<tr>
<td></td>
<td>E5 Reported symptoms may be more severe after a second whiplash injury.</td>
<td>L</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>E6 In societies with no litigation and/or low therapeutic involvement WAD is short lived, with little or no link to chronic symptoms.</td>
<td>C</td>
<td>65 66 67 68 69</td>
</tr>
<tr>
<td>Clinical</td>
<td>C1 Clinical history and examination are important to determine the WAD Grade, but add little to identifying the source of pain or its prognosis.</td>
<td>C</td>
<td>11 70 71 72</td>
</tr>
<tr>
<td></td>
<td>C2 Clinical outcome at 2 years can be predicted at 3 months.</td>
<td>C</td>
<td>51 52 53</td>
</tr>
<tr>
<td></td>
<td>C3 Non-physical factors are important in the development of chronicity.</td>
<td>C</td>
<td>57 73 74 75 76 77 78</td>
</tr>
<tr>
<td></td>
<td>C4 Most common symptoms on presentation: neck pain ~100%; neck stiffness ~70%; headache 50-80%; low back pain ~60%; shoulder pain 40-75%; visual disturbance/dizziness 10-50%.</td>
<td>C</td>
<td>70 79 80</td>
</tr>
<tr>
<td></td>
<td>C5 There is considerable individual variability in response to the accident and to symptoms.</td>
<td>B</td>
<td>14 26 29 55 81</td>
</tr>
<tr>
<td></td>
<td>C6 Generalised hyper-excitability, CNS sensitisation, and muscular dysfunction have been hypothesised in chronic whiplash patients.</td>
<td>C</td>
<td>22 82 83 84</td>
</tr>
<tr>
<td>Investigation</td>
<td>In1 MRI is generally unhelpful except where surgery planned.</td>
<td>B</td>
<td>85 86</td>
</tr>
<tr>
<td></td>
<td>In2 MRI shows high levels of abnormalities in normal, asymptomatic people – particularly age related changes.</td>
<td>B</td>
<td>87 88 89</td>
</tr>
<tr>
<td></td>
<td>In3 Pre-existing abnormalities on MRI (mainly age related changes), whilst not specifically related to the neck injury, may be a risk factor for longer pain duration.</td>
<td>B</td>
<td>46 87 90</td>
</tr>
<tr>
<td></td>
<td>In4 Radiographs considered unnecessary for Grades 0-1; advised for Grades II; usually negative and can highlight non-relevant findings.</td>
<td>C</td>
<td>5 6 91 92</td>
</tr>
<tr>
<td>Psychology</td>
<td>P1 Road traffic accident may trigger emotional and/or cognitive changes.</td>
<td>C</td>
<td>93 94 95 96</td>
</tr>
<tr>
<td></td>
<td>P2 Psychological disturbance may develop in the first three months as a consequence of symptoms.</td>
<td>C</td>
<td>51 81 97 98</td>
</tr>
<tr>
<td></td>
<td>P3 Expectation, amplification, and attribution are important in development of chronic pain and disability.</td>
<td>B</td>
<td>99 100</td>
</tr>
<tr>
<td></td>
<td>P4 WAD symptoms can be associated with illness behaviour.</td>
<td>B</td>
<td>65 92</td>
</tr>
<tr>
<td></td>
<td>P5 Specific coping strategies may be beneficial.</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P6 Psychological factors, such as anxiety, catastrophising, depression, and fear avoidance, have a significant influence on the clinical picture and on outcomes (including employment status).</td>
<td>C</td>
<td>102 103 104 105</td>
</tr>
<tr>
<td>Models</td>
<td>M1 Biopsychosocial model applies: similar to other musculoskeletal pain.</td>
<td>C</td>
<td>100 109 110 111 112 73</td>
</tr>
<tr>
<td></td>
<td>M2 An injury event does occur; with potential for some tissue damage, even if the precise structure cannot be identified.</td>
<td>B</td>
<td>9 12 18 113</td>
</tr>
<tr>
<td></td>
<td>M3 Chronic symptoms developing after whiplash injury are related closely to the presence of secondary biopsychosocial influences.</td>
<td>B</td>
<td>73 99 111 114</td>
</tr>
<tr>
<td></td>
<td>M4 Whiplash may be conceptualised as a risk factor for cervical symptoms rather than a discrete disease entity.</td>
<td>L</td>
<td>115</td>
</tr>
<tr>
<td>Treatment</td>
<td>T1 Faster recovery with return to pre-accident activities as soon as possible.</td>
<td>C</td>
<td>5 6 116</td>
</tr>
<tr>
<td></td>
<td>T2 Active treatment is the most effective approach, with the corollary that rest is detrimental.</td>
<td>C</td>
<td>6 117 118 78 119 120</td>
</tr>
<tr>
<td></td>
<td>T3 Collars not helpful (grade I, II, and III); certainly beyond 72 hours.</td>
<td>B</td>
<td>5 6 121</td>
</tr>
<tr>
<td></td>
<td>T4 Simple pain control is advantageous for musculoskeletal disorders, including WAD.</td>
<td>B</td>
<td>5 6</td>
</tr>
<tr>
<td></td>
<td>T5 Psychosocial interventions, including cognitive behavioural therapy, are helpful for management of musculoskeletal disorders, including WAD.</td>
<td>C</td>
<td>122 123 124 125 126</td>
</tr>
<tr>
<td></td>
<td>T6 Manual therapy (mobilation and/or manipulation) helpful in the early stages of WAD.</td>
<td>C</td>
<td>6 127 128 129 130 131 132 133</td>
</tr>
<tr>
<td></td>
<td>T7 Self exercises helpful for early recovery.</td>
<td>C</td>
<td>6 78 134</td>
</tr>
<tr>
<td></td>
<td>T8 Traditional physical therapy modalities have limited effect.</td>
<td>B</td>
<td>6 135</td>
</tr>
<tr>
<td></td>
<td>T9 Over-medicalisation may contribute to chronic symptoms.</td>
<td>B</td>
<td>112 136 137</td>
</tr>
<tr>
<td></td>
<td>T10 Radiofrequency neurotomy can reduce symptoms related to zygaphophysial joints in chronic WAD.</td>
<td>L</td>
<td>138 139</td>
</tr>
<tr>
<td></td>
<td>T11 Antidepressants may relieve pain in chronic WAD.</td>
<td>L</td>
<td>97 140</td>
</tr>
</tbody>
</table>
Table 1 (continued) Results of literature review: evidence statements, rating, and linking

<table>
<thead>
<tr>
<th>Topic</th>
<th>Evidence statement</th>
<th>Rating</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>There is an absence of scientific information on educational interventions for WAD: these statements are mostly from other musculoskeletal literature.</td>
<td>B</td>
<td>5 6</td>
</tr>
<tr>
<td>Ed1</td>
<td>Guidelines stress that information and advice is important in early management.</td>
<td>C</td>
<td>126 141 142 143 144 145</td>
</tr>
<tr>
<td>Ed2</td>
<td>Patients want and appreciate written information.</td>
<td>C</td>
<td>4 146 147</td>
</tr>
<tr>
<td>Ed3</td>
<td>Readability, understand-ability, acceptability, and inclusion of practical advice are important elements for booklets.</td>
<td>C</td>
<td>148 149 150 151 152 153</td>
</tr>
<tr>
<td>Ed4</td>
<td>Innovative patient educational material (e.g., The Back Book), that presents unambiguous messages focused on changing detrimental beliefs and attitudes can shift beliefs whilst having a beneficial effect on clinical outcomes, and may reduce care seeking and work loss. However, more traditional booklets may not have the same effect.</td>
<td>C</td>
<td>148 149 150 151 152 153</td>
</tr>
<tr>
<td>Ed5</td>
<td>Patients retain knowledge from health educational booklets. Men may be less likely to read information.</td>
<td>C</td>
<td>143 154 155 156</td>
</tr>
<tr>
<td>Social policy</td>
<td>Economic incentives, changes to rules governing eligibility, and moves to no fault compensation can influence reporting rates and societal costs; these issues may be confounded with reduced contact with therapeutic and legal communities.</td>
<td>C</td>
<td>137 157 158 159 160 161 162</td>
</tr>
<tr>
<td>S1</td>
<td>There are high costs to society in many countries; in common with other musculoskeletal conditions, the majority of the costs are incurred by the chronic cases.</td>
<td>C</td>
<td>136</td>
</tr>
<tr>
<td>S2</td>
<td>III directed or blanket investigations and treatment may contribute to illness behaviour</td>
<td>C</td>
<td>5 159 163</td>
</tr>
</tbody>
</table>

C=consistent evidence; B=balance of evidence; L=limited evidence.

The Back Book

The following core set of evidence based messages represents a simple list of fundamental importance. All clinicians treating or advising the patient should deliver. Accepting that discussion time with the patient is limited in accident and emergency department, it is likely to be helpful if the patient can access the same information and advice in written form.

1. Staying as active as possible is important. Keep moving don't stay in one position for long, move about before you stiffen up, and don't completely avoid things. Most daily activities and early return to work are helpful.
2. Psychological factors (notably distress and fear) are risk factors for chronicity. Don't worry and don't be frightened of activity. Try to find a way to relax and don't worry. Pain control: for simple analgesia it's an aid to increasing early activity. It should improve rapidly if the patient can access the same information and advice in written form.
3. Prolonged inactivity is unhelpful. Avoiding daily activities slows recovery. Some activities may involve some pain, but fear is not the same as harm.
4. Recognise other symptoms: Headache, arm pain, jaw pain and dizziness are common and not a reason for concern. Emphasise the favourable prognosis: If it should improve quickly, with an active approach; there is no reason why prolonged pain will persist for a long term disability. The need to repair and restore is helped by activity.
5. Acute injuries are not serious: There has been no injury to the neck, but emphasise the need for rehabilitation. The exercises and points have been affected but they have a natural ability to repair and restore. The patient should deliver. Accepting that discussion time with the patient is limited in accident and emergency department, it is likely to be helpful if the patient can access the same information and advice in written form.

Kim Burton took part in the selection of articles, evidence synthesis, formulation of patient centred messages, and writing of the paper. Tim McClune conducted the search of the scientific literature, took part in selecting articles for analysis and discussion. This review was funded by The Association of British Insurers.
Huddersfield, UK

T McClune, A K Burton, G Waddell, Authors’ affiliations of the paper, and will act as guarantor for the paper. Gordon Waddell

504 McClune, Burton, Waddell

www.emjonline.com

26 23 Magnusson ML

12 Davis CG

20 Yoganandan N

10 Allen ME

19 Lord SM

32 Kullgren A

36 Radanov BP

9 Coulter A

66 Tencer AF

21 Brault JR

566 McClune, Burton, Waddell

349 Sturzenegger M

244 Gargan MF

Evidence based advice in whiplash

Evidence based advice in whiplash