A 27 year old man with histiocytosis X presented to the emergency department with left posterior chest wall pain and marked dyspnoea. The patient previously had recurrent pneumothoraces, eight on the right and two on the left. He had undergone pleurodesis of the right lung. His medical history also included invasive bronchopulmonary aspergillosis and an embolisation of the right pulmonary vessels for life threatening massive hemoptysis. He was on two litres per minute of home oxygen, which usually maintained his oxygen saturations around 94%.

On examination he was pale and sweaty with a heart rate of 160 per minute and a respiratory rate of 42 per minute. He had an oxygen saturation of 88% on 15 litres per minute of oxygen and a blood pressure of 76/45 mm Hg. Respiratory examination revealed diminished air entry bilaterally more marked on the left with increased resonance over the anterolateral left hemithorax. His trachea was noted to be central.

Emergency chest radiography was performed but while awaiting the return of the film the patient decompensated further, his saturations decreased to 81%, and his trachea was now deviated to the right. An emergency needle decompression was performed at the point of poorest air entry and maximal resonance, which was the left sixth intercostal space in the anterior axillary line. Some 300 ml of air was aspirated from the left hemithorax and the patient clinically improved. The chest radiograph revealed bilateral infiltrates and underlying cystic and bullous disease but failed to reveal evidence of a pneumothorax (fig 1). A chest radiograph performed after the needle decompression also failed to show a pneumothorax. Computed tomography (CT) of the thorax revealed an anterior pneumothorax (fig 2). This was drained under CT guidance by the placement of a chest drain catheter.

During the patient’s in hospital stay his chest drain was removed as his chest radiograph showed no evidence of residual pneumothorax. The patient became markedly dyspnoeic within 24 hours. Because of the clinical impression of the recurrence of the tension pneumothorax the patient had a needle decompression performed in the classic manner. The needle placed initially at the second intercostal space in the left midclavicular line failed to permit aspiration of air. An attempted needle decompression at the fourth intercostal space in the mid-axillary line was also unsuccessful. Urgent CT again confirmed a left sided anterior pneumothorax. A chest drain catheter was placed under CT guidance. The patient was discharged from hospital 23 days later. Resolution of the pneumothorax was confirmed by CT before discharge.

THE PROBLEM
Diagnosing a pneumothorax in patients with chronic lung disease may be difficult. Chest radiography may fail to show a pneumothorax—that is, an occult pneumothorax. How is occult pneumothorax best diagnosed and treated?

THE EVIDENCE
A search of the literature was undertaken using occult pneumothorax and its associations—that is, “OCCULT”.mp.OR “VENTRAL”.mp.OR “SUPINE”.mp.OR “LOCALISED”.mp.OR “LOCALIZED”.mp.OR “DIFFICULT”.mp.OR “HIDDEN”.mp. AND PNEUMOTHORAX/ or “PNEUMOTHORAX”.mp. The limits to human and English language were applied. The search was performed using:
Medline from 1966 to December 2000; Best evidence 1991 to the present; The Cochrane Database of systematic reviews, issue 3, 2000; Cinahl 1982 to October 2000; Database of abstracts of Reviews of effectiveness 3rd quarter 2000; the emedicine database; a search of the relevant bibliographies.

The relevant articles are included.

In most patients pneumothorax is readily detected. Radio logical confirmation of the diagnosis is based on the ability to observe the lucent band of air between the visceral and parietal pleura and recognising the opaque pleural stripe on the chest radiograph. The association between Langerhan's histiocytosis X and pneumothoraces is well publicised, with the occurrence of pneumothorax in these patients being about 25%. In patients with cystic lung disease, the diagnosis of pneumothorax based on plain chest radiography alone may be difficult. Phillips et al noted that the complex appearance of the lungs themselves or partial adherence of the lung to the chest wall because of surgery or inflammation, or both of these factors, may result in an unusual configuration of the pneumothorax or mask it altogether.

Occult pneumothorax has been defined as pneumothoraces seen on CT scans but not on routine chest radiographs. Missed pneumothorax, which is a separate entity, may be defined as a pneumothorax that was seen on retrospective review of the chest radiograph but was small or subtle enough not to be diagnosed prospectively. The phenomenon of occult pneumothorax is well described in the trauma literature with an incidence of between 2% and 12%. Hechir et al postulated that part of the problem with regard to trauma patients and the phenomenon of occult pneumothoraces was attributable to the fact that the chest radiographs were often taken supine, suboptimally, and soon after arrival, whereas chest injury may take time to become apparent. They found that pneumothorax was the most commonly missed abnormality on chest radiography in their study of 100 trauma patients. Occult pneumothorax has also been described in medical patients. Carr et al in a case series of nine patients with bullous emphysema on whom they performed CT as part of the preprocedural assessment of bullous emphysema found it to be useful in assessing the extent of the disease and coincidentally they noted one of the patients had an occult pneumothorax.

Tagliafico in a review of 74 ARDS patients found an occult pneumothorax rate of one in three. Interestingly ineffective position of the thoracostomy tube was found in 13 of 20 patients.

SUGGESTED SOLUTIONS
What are the investigation options in patients with a possible pneumothorax particularly with chronic lung disease.

Chest radiography
As previously stated, occult pneumothorax is a pneumothorax identified by CT scan but not seen on conventional radiographs. Carr et al in a cadaveric study found that the ability of radiologists to diagnose pneumothorax varied with cadaver position and was dependent on the volume of air. The left lateral decubitus view was apparently the most sensitive for diagnosing pneumothorax on plain radiographs.

Kolleff et al in their prospective case series of 464 adult ICU patients found that atypical radiographic location of the pneumothorax contributed to the failure to diagnose it initially. In common with other authors Kolleff recommended obtaining additional views, such as cross table lateral, lateral decubitus, or full expiratory views. Jantsch et al in their study on 55 ICU patients with sudden deterioration of gas exchange and negative AP chest radiography found that in 14 (33%) of 42 cases a tangential view revealed a pneumothorax.

Thoracic ultrasonography
Lichtenstein et al reported a study in which they described and evaluated lung sliding, an ultrasound finding the absence of which was seen in all 43 (100%) cases of pneumothorax. They concluded that ultrasound was a sensitive test to detect pneumothorax. Goodman et al in a prospective blinded study comparing CT, ultrasound, and erect chest radiography after 41 CT guided biopsies found ultrasound more sensitive than erect chest in the detection of pneumothorax. Lichtenstein et al in a prospective clinical study found that vertical ultrasound artefacts (comet tail artefact) present at time of ultrasound was not found if a pneumothorax was present.

Ultrasound may therefore have a useful role in early diagnosis of occult pneumothorax particularly in the form of bedside ultrasonography, which may facilitate rapid diagnosis and localisation of the pneumothorax in the resuscitation room.

Computed tomography
Bungay et al in a study of 88 consecutive CT guided lung biopsies found that CT was more sensitive as it detected 35 pneumothoraces as compared with the 22 that were picked up by chest radiograph. CT picked up smaller and shallower pneumothoraces than conventional chest radiography. Phillips et al in their article on the role of CT in the management of pneumothorax in patients with complex cystic lung disease advocated the use of CT in such patients when they become acutely breathless and the plain radiograph either fails to reveal the presence of a pneumothorax, although one is suspected, or fails to provide sufficient information to allow management decisions to be made.

TREATMENT OPTIONS
The treatment of primary pneumothorax has been controversial since the 1960s. Patients with severe breathlessness or those with signs consistent with a tension pneumothorax obviously require immediate drainage.

The major complication of any pneumothorax is the potential for a tension pneumothorax to develop that may be rapidly fatal and must be excluded immediately in all patients regardless of aetiology. The British Thoracic Society have defined a tension pneumothorax as any pneumothorax with cardiorespiratory collapse and they advise immediate decompression. In patients with minimal pulmonary reserve, even a small pneumothorax can have adverse haemodynamic effects or cause tension that rapidly induces cardiovascular collapse and death. Baumann et al note that the physiological hallmark of tension pneumothorax is that intrapleural pressure exceeds the atmospheric pressure throughout the respiratory cycle. They also warn that previous studies have shown a fourfold increase in deaths when the treatment of the tension pneumothorax was delayed awaiting radiographic confirmation.

In a patient with an occult pneumothorax without significant cardiorespiratory compromise the aims of treatment are
Thoracoscopy
Pleurodesis
Chest tube insertion
Simple aspiration with a catheter, with immediate removal
Simple observation

Clinical suspicion of pneumothorax
Evidence to suggest tension pneumothorax: consider emergency needle aspiration if acute physiological compromise
No evidence of tension pneumothorax
Non-comfirmatory plain radiograph
Consider lateral/tangential radiograph
Consider thoracic ultrasound
Arrange CT +/- CT guided drainage

Figure 3 Suggested algorithm for management of occult pneumothorax.

the same as for spontaneous pneumothorax. Baumann et al defined the goals of treatment of a pneumothorax as eliminating pleural air, facilitating pleural healing, and attempting recurrence prevention. 11

Sahm and Heffner in their review of spontaneous pneumothorax listed the therapeutic modalities available as follows:

• Simple observation
• Supplemental oxygen (this accelerates the reabsorption of air by the pleura by a factor of four, which occurs at a rate of 2% per day in patients breathing room air.)
• Simple aspiration with a catheter, with immediate removal of the catheter after the pneumothorax has been evacuated.
• Chest tube insertion
• Pleurodesis
• Thoracoscopy
• Video assisted thoracoscopic surgery
• Thoracotomy and pleural surgery 12

Occult pneumothorax may create its own therapeutic problems. Reinhold et al in a retrospective study of 42 consecutive patients who underwent percutaneous catheter drainage of pleural collections concluded that ease of placement, comparable success rate, and safety of radiologically placed catheters make them an attractive alternative to surgically placed chest tubes. 13 With regard to the removal of drainage devices in occult pneumothorax, failure to detect a pneumothorax on conventional radiographs should not be among the criteria for removal. As seen by our patient’s in hospital course if possible CT resolution should be confirmed.

WHAT TO DO IN THE RESUSCITATION ROOM
If tension pneumothorax is suspected it should be treated with immediate decompression. If needle decompression fails then consider an alternative site of insertion of the needle or image guided definitive drainage. When the occult pneumothorax is not under tension CT scan will help to guide treatment. Phillips et al in their article on the role of CT in the management of pneumothorax in patients with complex cystic lung disease advocated the use of CT in such patients when they become acutely breathless and the plain radiograph either fails to reveal the presence of a pneumothorax, although one is suspected, or fails to provide sufficient information to allow management decisions to be made. 18

Figure 3 shows a suggested algorithm for the treatment of occult pneumothorax.

Contributors
Peadar Gilligan treated the patient, initiated, the review, and wrote the paper. He also acts as guarantor for the paper. Deirdre Hegarty advised on the structure and content and edited the paper. Dr Taj Hassan contributed to the writing and formulation of the review and advised on its structure and edited the paper.

Authors’ affiliations
P Gilligan, T B Hassan, Department of Accident and Emergency Medicine, The Leeds General Infirmary, Leeds, UK
D Hegarty, Family practitioner, Leeds

Correspondence to: Dr P Gilligan, The Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK; hegartydeirdre@ireland.com

Accepted for publication 2 October 2002

REFERENCES
Caesarean delivery during maternal cardiopulmonary resuscitation for status asthmaticus

S Lurie, Y Mamet

A patient who sustained a recurrent cardiopulmonary resuscitation due to status asthmaticus during one pregnancy followed by a birth of an apparently normal infant is described. Promptly performed caesarean delivery might have saved the mother and her infant. Cardiopulmonary resuscitation is less effective in a near term pregnant woman.

Although most of the ancient cultures contain legends of postmortem caesarean delivery, there were the Roman kings who formally established postmortem caesarean by the law. Later, when the ancient Rome became Roman Empire, the “Lex Regia” became “Lex Cesarea”. In fact, one of the commonest explanations for the origin of the term “caesarean section” comes from this law. The ancients permitted a postmortem caesarean section as it could sometimes save fetal life after the mother's death. Still, infant survival was rare. The term “pericrimean” caesarean section is applied to cases where the mother was on cardiopulmonary resuscitation before the caesarean section and showed no signs of recovery afterwards. Today, the most common cause for pericrimean or postmortem caesarean section is a road accident. Maternal survival after caesarean section performed during cardiopulmonary resuscitation is extremely rare. We describe a case of maternal and infant's survival after caesarean section performed during cardiopulmonary resuscitation due to status asthmaticus, an infrequent cause for cardiac arrest during pregnancy.

DISCUSSION

Cardiac arrest occurs rarely in pregnancy. Only few cases of pregnancy outcome after life threatening status asthmaticus have been described. Only three maternal deaths attributed to asthma are described in a review of the 188 reported cases of postmortem caesarean with surviving infants. A case of life threatening status asthmaticus at 12.5 weeks’ gestation with birth of a normal full term infant after a successful resuscitation was reported. An improvement of uncontrollable cases of life threatening status asthmaticus after termination of pregnancy by caesarean was also reported.
It is important to recognise that cardiopulmonary resuscitation is less effective in a near term pregnant woman. To diminish the effects of right lateral uterine displacement, a pregnant woman needs to be placed in a left lateral tilt during cardiopulmonary resuscitation. Reliefing vena cava occlusion allows chest compression to provide sufficient cardiac output to facilitate cardiopulmonary resuscitation. In recently described case reports, advanced cardiopulmonary resuscitative measures were unresponsive until caesarean delivery was instituted. This implies that caesarean section might be necessary to accomplish a successful resuscitation even in case of a dead fetus. A perimortem caesarean started within four minutes of maternal cardiac arrest will yield the highest rates of maternal survival regardless of its cause.

Electric cardioversion during pregnancy has been described in the literature and seems safe for the fetus. The physiological changes in pregnancy do not change defibrillation energy requirements for adult defibrillation.

The outcome in our case was successful because of left lateral tilt position of the mother during cardiopulmonary resuscitation and rapid decision to perform a caesarean section.

We report this case because it calls attention to an acute condition that may be seen only once over the course of a busy career of practicing physician. The critical period in management of a pregnant patient with cardiopulmonary arrest attributable to status asthmaticus is within the first several minutes of the event. It is important to recognise that promptly performed caesarean delivery may save the mother and her infant. The case of this patient is unique in view of the fact that she sustained a recurrent cardiopulmonary resuscitation attributable to status asthmaticus during one pregnancy followed by a birth of an apparently normal infant.

Three women in a car

S Satchithananda

Isolated sternal fractures have been increasing in number since the advent of seat belt legislation in 1983. The management of these patients has been a matter of debate for some time. These cases demonstrate that other coexistent pathology may be difficult to identify at the time of presentation and that a high level of suspicion for other injuries is necessary. Three women presented to the emergency department after a collision between their car travelling at 45 miles per hour and a stationary van.

CASE 1

The 71 year old restrained driver of the car presented complaining of chest pain and tenderness. Previous medical history included osteoporosis and long term corticosteroid use for asthma. Initial observations, examination, chest radiograph, and electrocardiogram were normal. A sternal radiograph demonstrated a fracture of the sternum. A brief episode of hypotension was noted (systolic blood pressure of 90) but thought to be vagal and the patient was later discharged home with oral analgesia.

CASE 2

The 77 year old restrained front seat passenger also presented with chest pain and tenderness. Initial observations, chest radiograph and electrocardiogram were also normal. A fractured sternum was confirmed on radiography. The patient required intravenous opioids as analgesia and as she lived alone she was admitted to the emergency department overnight.

Over the next 16 hours she developed an ileus. After a normal CT scan of her abdomen she was managed conservatively and discharged home after three days. Her CT scan demonstrated a small right sided pleural effusion not evident on initial chest radiograph or clinical examination.

Contributors

Samuel Lurie performed the caesarean section during the cardiopulmonary resuscitation, reviewed the literature, participated in discussion of core ideas and writing the paper, and acts as guarantor of the paper. Yaakov Mamet participated in discussion of core ideas, edited the paper, and also acts as guarantor of the paper.

Authors’ affiliations

S Lurie, Y Mamet, Department of Obstetrics and Gynaecology, Laniado Hospital, Netanya, Israel

Correspondence: Dr S Lurie, Department of Obstetrics and Gynaecology, Edith Wolfson Medical Centre, Holon, Israel; drslurie@hotmail.com

Accepted for publication 14 June 2002

REFERENCES


Box 1 ECG abnormalities of myocardial contusion

Possible ECG findings

Unexplained sinus tachycardia

Arrhythmias and conduction abnormalities

ST segment changes

– non-specific in myocardial injury

– concave ST segment classical of pericarditis (may be associated with low voltage complexes)
CASE 3
This 77 year old restrained rear seat passenger of the car was also complaining of chest pain and tenderness. The initial observations, examination, and chest radiograph were normal and her electrocardiogram showed a left bundle branch block morphology (although the patient reported no known cardiac history). A radiograph of her sternum demonstrated a fracture. During the administration of intravenous morphine “isolated” sternal fractures may be difficult and that in fact two of these three cases had significant complications warranting further investigation despite minimal symptoms and signs at the time of presentation. A sternal fracture is an indicator of significant blunt injury to the patient and should therefore be treated with a high degree of suspicion and a careful search for other injuries made. The “isolated sternal fracture” may be a diagnosis only safely made retrospectively after a period of observation.

DISCUSSION
Advanced Trauma Life Support advocates awareness of the risk of blunt cardiac injury and pulmonary contusions associated with sternal fractures during the assessment for multisystem injury. Many authors have written regarding the incidence of complications in isolated sternal fractures and whether admission of these patients is warranted. Most studies have been retrospective in design and therefore do not address the difficulty in initial assessment to rule out other injuries. Sadaba et al published a review article in May 2000 identifying the problem of wide regional variations in the management of isolated sternal fractures in the United Kingdom. The authors suggested guidelines for the management of isolated sternal fractures implying that if a chest radiograph and electrocardiogram were normal on admission (in a patient without underlying cardiorespiratory disease) and adequate analgesia was achieved then that patient may be appropriate for discharge to a home environment. Evidence of complications of sternal injury may be evident on ECG or chest radiograph (boxes 1 and 2) but normal investigations do not necessarily imply that the fracture is an isolated injury. Most articles advocating discharge from accident and emergency focus on the low incidence of cardiac complications associated with sternal fractures. Unintentionally these papers may have led to a perception that patients with presumed isolated sternal fractures may be safe to discharge from the emergency department. Considering the high incidence of associated injuries demonstrated by Brookes et al (table 1) a prospective study of a series of 272 patients in which 54.7% with sternal fractures had other skeletal or visceral injuries we should continue to be vigilant in our assessment of this group of patients.

The cases reported here show that early identification of “isolated” sternal fractures may be difficult and that in fact two of these three cases had significant complications warranting further investigation despite minimal symptoms and signs at the time of presentation. A sternal fracture is an indicator of significant blunt injury to the patient and should therefore be treated with a high degree of suspicion and a careful search for other injuries made. The “isolated sternal fracture” may be a diagnosis only safely made retrospectively after a period of observation.

Contributors
Dr S Satchithananda researched and wrote the case report. Mr B Roy, emergency medicine consultant at Peterborough District Hospital, kindly reviewed the manuscript.

Table 1
Incidence of injuries associated with sternal fracture (adapted from Brookes et al)

<table>
<thead>
<tr>
<th>Injury</th>
<th>Incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture</td>
<td>5.2</td>
</tr>
<tr>
<td>Clavicle</td>
<td>5.2</td>
</tr>
<tr>
<td>Rib 1 or 2</td>
<td>5.9</td>
</tr>
<tr>
<td>Rib 3–12</td>
<td>21.3</td>
</tr>
<tr>
<td>Cervical</td>
<td>2.2</td>
</tr>
<tr>
<td>Thoracic</td>
<td>4.8</td>
</tr>
<tr>
<td>Lumbar/spinal</td>
<td>3.3</td>
</tr>
<tr>
<td>Pelvis</td>
<td>2.2</td>
</tr>
<tr>
<td>Limb</td>
<td>16.9</td>
</tr>
<tr>
<td>Skull/face</td>
<td>3.7</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>3.3</td>
</tr>
<tr>
<td>Haemorrhax</td>
<td>5.9</td>
</tr>
<tr>
<td>Contusion</td>
<td>3.7</td>
</tr>
<tr>
<td>Loss of consciousness</td>
<td>20.6</td>
</tr>
<tr>
<td>Abdominal</td>
<td>3.3</td>
</tr>
</tbody>
</table>

REFERENCES
Temperate pyomyositis in an injecting drug misuser. A difficult diagnosis in a difficult patient

M Crossley

The medical care of injecting drug misusers presents many challenges. Though they can be awkward and unreliable they are at risk of serious medical conditions not often seen in the general population. This case report illustrates some of the difficulties in the diagnosis and treatment of a patient with pyomyositis associated with heroin injection.

A 32 year old man attended the emergency department on the advice of his general practitioner complaining of abdominal pain and vomiting, fresh rectal bleeding, haematuria, and low back pain. He had noticed a swelling on the left side of his lower back, which had become so painful he was barely mobile. He had been injecting heroin for about seven years and had been feeling unwell for two weeks after accidental extravascular injection into his left groin. On closer questioning he admitted to having back pain and requiring elbow crutches to walk for over a year.

On examination he had a temperature of 35.2°C, pulse of 105, respiratory rate of 20, and blood pressure of 100/50. He was dehydrated and looked unwell. He had a fluctuant swelling about 15 cm in diameter on the left side of his lower back, which extended across his sacrum. He was tender over both his greater trochanters. A clinical diagnosis of septicaemia secondary to an abscess was made. As it was not possible to arrange immediate computed tomography the patient was referred to the general surgeons.

The surgical registrar diagnosed septic arthritis involving both hips and sacroiliac joints and advised referral to the orthopaedic surgeons. Orthopaedic opinion was that there was no evidence of septic arthritis in his hips and referred him back to the care of the emergency department. Finally, four hours after arrival, he was admitted to the acute medical ward. On closer questioning he admitted to having back pain and requiring elbow crutches to walk for over a year.

On examination he had a temperature of 35.2°C, pulse of 105, respiratory rate of 20, and blood pressure of 100/50. He was dehydrated and looked unwell. He had a fluctuant swelling about 15 cm in diameter on the left side of his lower back, which extended across his sacrum. He was tender over both his greater trochanters. A clinical diagnosis of septicaemia secondary to an abscess was made. As it was not possible to arrange immediate computed tomography the patient was referred to the general surgeons.

MEDICAL HISTORY
On review of notes it was found that, in the 13 months before this admission, he had attended the emergency department three times and been admitted to hospital twice. He had also been seen in the orthopaedic outpatient department. His initial contact had been an admission, arranged by his general practitioner, when he had a left calf deep venous thrombosis and associated cellulitis. At that time, S aureus was isolated from blood cultures. He was treated with oral fluclaxacillin and tinzaparine. He failed to attend for follow up.

Five months later he attended the emergency department with a temperature and low back pain. A diagnosis of psoas abscess was made and he was admitted to the acute medical ward. He absconded from the ward before being seen. The blood cultures that had been taken in the emergency department once again grew S aureus. Attempts made to contact the patient failed as he had lost touch with his family, his phone had been disconnected, and he was no longer registered with a general practitioner. It is interesting to note that the card from this attendance was missing from his emergency department notes, and the blood culture report was filed in the hospital notes only. This information was therefore not available to emergency department staff when he next attended.

Six weeks later he returned to the emergency department complaining of nausea, vomiting, and back pain. He was again admitted under the physicians with a provisional diagnosis of pyelonephritis with muscular back pain. At this stage his haemoglobin was 9.3 g/dl. He subsequently had a normal upper gastrointestinal endoscopy. Once again he developed a deep venous thrombosis. S aureus was again isolated on blood cultures. He was discharged prescribed trimethoprim, fluclaxacillin, and warfarin.
After a further six weeks he re-presented to the emergency department with low back pain. His temperature was normal. A diagnosis of muscular pain was once again made. The following week he was seen in the orthopaedic outpatient department, having been referred by his general practitioner for investigation of the persistent low back pain. He was referred for physiotherapy and failed to attend for further follow up.

His next attendance five months later was the episode described initially.

DISCUSSION
Pyomyositis is a primary bacterial infection of skeletal muscle. It is common in the tropics (tropical pyomyositis), first being described by Scriba in 1885. It was first reported in the USA in 1971, when the term temperate pyomyositis was introduced. Between 1971 and 1986 fewer than 50 cases of temperate pyomyositis were reported. With the increasing prevalence of immunocompromised patients and injecting drug misusers it is becoming more widely recognised in temperate countries. It is commonly misdiagnosed in its initial stages. The most common muscle groups to be involved are iliopsoas (46%), gluteals (18%), and the thigh (18%). S aureus is the most frequently isolated organism, occurring in over 90% of patients in some series. Other organisms implicated include S pyogenes, S freudii, and E coli. Recognised predisposing factors are trauma, HIV infection, diabetes mellitus, corticosteroid treatment, malignancy, and intramuscular injection.

Pyomyositis presents in three stages. Initially there is myositis and muscle oedema but no abscess formation. The patient presents with muscle pain and low grade fever. At this stage the condition may be cured by appropriate antibiotic therapy, but it is difficult to diagnose because of non-specific signs and symptoms. The most common stage at presentation is stage two, characterised by abscess formation, muscle pain, fever, tenderness, and leucocytosis. This picture is complicated in stage three disease by systemic toxicity. Treatment in the latter stages requires surgical drainage as well as appropriate antibiotics.

This case highlights some of the difficulties posed in managing the health needs of drug misusers. It seems probable that the extensive abscesses seen in this patient had been developing over at least 13 months. In this time he had been seen in the hospital on no less than five separate occasions. A combination of factors contributed to the delay in diagnosis. As previously mentioned temperate pyomyositis is often misdiagnosed initially. Having been admitted, the patient absconded from the ward, failed to keep follow up appointments, had been removed from his GP’s list, and was at times uncontactable. However, some of the responsibility must rest with the medical teams involved in his care. Incomplete medical records and poor communication between medical specialties, surgical specialties, and the emergency department regarding inpatient investigations and blood cultures resulted in lost opportunities to reinstate appropriate inpatient care.

If the emergency department were to routinely receive and file copies of discharge letters for patients admitted through the department, we would have been aware that on his second admission a diagnosis of psoas abscess had been made, and S aureus had been isolated from blood cultures. This should have enabled him to be rapidly readmitted under the appropriate specialty.

Computer based records should reduce the incidence of notes “going missing” and enable all hospital and perhaps primary care staff to access investigations performed and treatment received by any patient.

It important for all medical staff who may come into contact with injecting drug misusers to be aware of the range of conditions with which they may present and receive adequate training in dealing with patients who refuse treatment. This should result in more timely and appropriate treatment, and ultimately reduce morbidity.

ACKNOWLEDGEMENTS
With thanks to Dr Richard Lynch for help with the preparation of this article, and to Mr Paul Grout for support with the original idea.

REFERENCES
A 36 year old woman with Down’s syndrome and hypothyroidism presented to the emergency department with breathlessness. She had suffered with coryzal symptoms for a week, before becoming increasingly dyspnoeic the day before presentation. On arrival she was unable to speak and stridulous. She was neither drooling nor toxic. Her temperature was 37.4°C. However oxygen saturation was reduced and arterial blood gas measurement showed a type 2 respiratory failure with acidosis. An urgent anaesthetic opinion was sought, and the patient transferred to the resuscitation room. Fibreoptic laryngoscopy confirmed the suspicion of a supraglottitis. After inhalation induction using sevofluorane, intubation was achieved with difficulty. Using bougie guidance, a size 7.0 otrachal tube was found to be too large, hence the patient was intubated with a size 6.0 otrachal tube. Cefuroxime and dexamethasone were given, and the patient was admitted to the intensive care unit. The supraglottic inflammation was monitored by regular laryngoscopy. After seven days without significant reduction in supraglottic inflammation, formal tracheostomy was performed. Blood cultures were negative.

DISCUSSION
Infection and inflammation of the supraglottic structures may involve the epiglottis only or extend to the aryepiglottic folds and arytenoid soft tissue, causing epiglottitis and supraglottitis respectively. Although widely reported in paediatric practice before routine H influenzae B immunisation, supraglottitis may be under-diagnosed in adults.1 When such patients present with signs or symptoms of respiratory distress, there is risk of life threatening complete airway obstruction. Early interventional support of the airway must be considered.2 A wide variety of infections have been associated with the problem including Gram positive cocci, meningococcus, pasteurella, serratia, and herpes simplex virus. Hence a broad spectrum antibiotic is needed in the first instance. In respiratory distress, temporising measures such as humidified oxygen and helium-oxygen mixtures are suggested to be useful before formal intubation is achieved. Nebulised epinephrine and corticosteroids are often used although neither is definitively proved to be of benefit.3 Emergency cricothyrotomy may be necessary. UK consensus among emergency anaesthetists suggests inhalation induction using sevofluorane as the best way of achieving intubation.4

In this case Down’s syndrome provided a number of additional challenges. People with Down’s syndrome are prone to respiratory infections. In addition airway problems such as obstructive sleep apnoea are common, a product of craniofacial differences in anatomy. These differences, such as macroglossia and a narrow nasopharynx, may also make intubation difficult. Studies of anaesthesia for elective surgery in Down’s syndrome have reported problems with atlantoaxial instability and tracheal stenosis. It is suggested that in the patient with Down’s syndrome an endotracheal tube smaller than predicted should be routinely used.3

LEARNING POINTS
This case highlights the importance of considering supraglottitis in the adult patient with stridor or painful dysphagia. Early airway intervention may be necessary. Furthermore, the anatomical differences associated with Down’s syndrome may have an important effect on disease progression and patient outcome. Emergency staff should be aware that patients with Down’s syndrome may require expert intubation with a smaller than expected endotracheal tube even in the absence of supraglottic swelling.

Funding: none.

Conflicts of interest: none.

ACKNOWLEDGEMENTS
The author thanks Dr J Kendall for his helpful comments.

Correspondence to: Dr M Gutenstein, Accident and Emergency Department, Frenchay Hospital, Bristol BS16 1LE, UK; doctormarco@yahoo.co.uk

Accepted for publication 1 March 2002

REFERENCES