Best evidence topic reports (BETs) summarise the evidence pertaining to particular clinical questions. They are not systematic reviews, but rather contain the best (highest level) evidence that can be practically obtained by busy practising clinicians. The search strategies used to find the best evidence are reported in detail in order to allow clinicians to update searches whenever necessary. The BETs published below were first reported at the Critical Appraisal Journal Club at the Manchester Royal Infirmary or placed on the BestBETs web site. Each BET has been constructed in the four stages that have been described elsewhere. The BETs shown here together with those published previously and those currently under construction can be seen at http://www.bestbets.org. Six BETs are included in this issue of the journal.

- Oxygen therapy in acute stroke
- CT pulmonary angiogram compared with ventilation-perfusion scan for the diagnosis of pulmonary embolism in patients with cardiorespiratory disease
- Combining clinical probability and ventilation-perfusion scan for diagnosis of pulmonary embolism
- Serum amylase and acute pancreatitis
- Ultrasonographic guidance and the complications of central line placement in the emergency department
- The utility of the tongue blade test for the diagnosis of mandibular fracture

K Mackway-Jones, Department of Emergency Medicine, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK; kevin.mackway-jones@man.ac.uk

Clinical scenario
A 73 year old woman presents to the emergency department with a six hour history of left sided hemiparesis. She has a past history of hypertension. On examination she is GCS 15 with a dense left hemiparesis and her basic observations are stable. You wonder whether the use of supplemental oxygen in the acute stage is needed and will have any effect on long term prognosis.

Three part question
In a [patient presenting to the emergency department with a stroke who does not need resuscitative measures] is [supplemental oxygen better than no oxygen] at [reducing long term disability and mortality]?

Search strategy

Search outcome
Altogether 18 papers were found of which one directly addressed the three part question (table 1).

Comment(s)
This large, well conducted study shows no statistically significant difference between the two groups. It shows there is no benefit to giving oxygen routinely to stroke patients, and suggests if given to non-hypoxic patients with mild to moderate strokes may increase mortality. The results for severe stroke patients were inconclusive.

The authors hypothesise (based on a small number of animal studies) that this may be attributable to oxygen free radicals.

- CLINICAL BOTTOM LINE
In non-hypoxic patients with minor or moderate strokes supplemental oxygen is of no clinical benefit.

CT pulmonary angiogram compared with ventilation-perfusion scan for the diagnosis of pulmonary embolism in patients with cardiorespiratory disease
Abstract
A short cut review was carried out to establish whether VQ scanning has better utility than CT in investigating possible pulmonary embolus in patients with chronic respiratory disease. A total of 239 papers were found using the reported search, of which one presented the best evidence to answer the clinical question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of this best paper are tabulated. A clinical bottom line is stated.

Clinical scenario
A 70 year old known COPD patient presents to your emergency department with pleuritic chest pain and dyspnoea suggestive of pulmonary embolus. As part of your diagnostic strategy, you wonder if V-Q scintigraphy has better diagnostic utility than CT for pulmonary embolus.

Three part question
In [patients with chronic respiratory disease] does [V-Q scintigraphy] have greater diagnostic utility than computed tomography in the [investigation of pulmonary embolus]?

Search strategy
Medline 1966-07/03 using the OVID interface. (exp Tomography, Spiral Computed OR exp Tomography, X-Ray Computed OR “CT”.$mp) AND (exp Ventilation-Perfusion Ratio OR “VQ”.$mp OR “V-Q”.$mp OR V-Q.$mp OR Ventilation Perfusion.$mp OR Ventilation-Perfusion.$mp OR perfusion.$mp) AND (exp pulmonary embolism OR pulmonary embolism.$mp OR “PE”.$mp OR Pulmonary infarct.$mp OR exp thromboembolism.$mp OR thromboembolism.$mp) LIMIT to human AND English.

Table 1
<table>
<thead>
<tr>
<th>Author, date and country</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Key results</th>
<th>Outcomes</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running OM and Guldvog B, 1999, Norway</td>
<td>550 patients presenting within 24 hours after stroke onset</td>
<td>RCT (randomised on birth dates)</td>
<td>Dissemination at seven months (Barthel Index)</td>
<td>No difference between the two groups on disability (p = 0.07) or impairment scores (p = 0.67)</td>
<td>Quasi-randomised</td>
</tr>
<tr>
<td>Hartmann I, Petronella H, Melissant C, et al, 2000, Netherlands</td>
<td>627 patients (91 COPD, 536 non-COPD) with suspected PE diagnosis</td>
<td>Diagnostic study</td>
<td>Proportion of diagnostic VQ scans and CT pulmonary angiograms from both groups</td>
<td>54% of VQ scans in COPD group ruled in/out PE v 79% of VQ scans in non-COPD group</td>
<td>Observational groups not evenly matched</td>
</tr>
</tbody>
</table>

Table 2
<table>
<thead>
<tr>
<th>Author, date and country</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartmann I, Petronella H, Melissant C, et al, 2000, Netherlands</td>
<td>627 patients (91 COPD, 536 non-COPD) with suspected PE diagnosis</td>
<td>Diagnostic study</td>
<td>Proportion of diagnostic VQ scans and CT pulmonary angiograms from both groups</td>
<td>54% of VQ scans in COPD group ruled in/out PE v 79% of VQ scans in non-COPD group</td>
<td>Observational groups not evenly matched</td>
</tr>
</tbody>
</table>

Copyright © 2002 The Authors. Emerg Med J, 20(6):548-551. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
outcomes, results and study weaknesses of these best papers are tabulated. A clinical bottom line is stated.

Clinical scenario
A 20 year old woman presents to the emergency department with shortness of breath and chest pain. Her n-dimer level is

Three part question
In [patients who have undergone ventilation-perfusion scans for possible pulmonary embolus] does [combining clinical probability of pulmonary embolism and ventilation-perfusion scan result] increase the [diagnostic utility]?

Search strategy
Medline using the OVID interface 1966-07/03. [exp pulmonary embolism/ OR pulmonary embol$.mp. OR PE.mp. OR exp thromboembolism/ OR pulmonary infarct$.mp.] AND [exp nuclear medicine/ OR exp ventilation-perfusion ratio/ OR ventilation-perfusion.mp. OR ventilation perfusion.mp. OR

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, date and country</td>
</tr>
<tr>
<td>PIOPED investigators, 1990, USA</td>
</tr>
<tr>
<td>Miniati M et al, 1996, Italy</td>
</tr>
<tr>
<td>Wells PS et al, 1998, Canada</td>
</tr>
<tr>
<td>Parrié R et al, 2000, Quebec and Geneva</td>
</tr>
<tr>
<td>Barbourh G et al, 2000, Switzerland</td>
</tr>
<tr>
<td>Nilsson T et al, 2001, Sweden</td>
</tr>
</tbody>
</table>
VQ.mp. OR lung scan.mp.] AND [exp Risk Assessment/ OR risk assessment.mp. OR risk stratification.mp. OR probability.mp.] LIMIT to human AND English.

Search outcome
Altogether 387 papers found of which six addressed the question and are shown in table 3.

► CLINICAL BOTTOM LINE
All ventilation-perfusion scans must be interpreted with an independent clinical probability score.

Serum amylase and acute pancreatitis

Report by John Butler, Consultant
Checked by Damian Bates, Specialist Registrar

Abstract
A short cut review was carried out to establish whether a normal serum amylase value rules out the diagnosis of acute pancreatitis. Altogether 191 papers were found using the reported search, of which four presented the best evidence to answer the clinical question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of these best papers are tabulated. A clinical bottom line is stated.

Clinical scenario
A 44 year old man presents to the emergency department with a four hour history of severe epigastric pain. You consider a diagnosis of pancreatitis and organise a serum amylase to be taken. You wonder whether a single normal serum amylase result is sufficiently sensitive to rule out pancreatitis in this patient.

Three part question
In [patients with abdominal pain] does [a normal serum amylase] exclude [the diagnosis of pancreatitis]?

Search strategy
Medline 1966-07/03 and Embase 1980-07/03 using the OVID interface. [[(exp Abdominal pain/ OR abdominal pain.mp) OR (exp Pancreatitis/ OR pancreatitis, acute necrotising/ OR pancreatitis, alcoholic/ OR pancreatitis.mp)] AND [(exp Amylases OR amylase$ OR amylase.mp)] AND [(exp Sensitivity and Specificity OR (sensitivity.mp AND specificity.mp)] LIMIT to human AND English.

Search outcome
Altogether 191 papers found of which four papers were relevant to the original question (table 4).

Comment(s)
The gold standard for the diagnosis of pancreatitis is considered to be surgical examination at laparotomy or pancreatic histology. Often in practice such information is either unavailable or obtained at postmortem examination. In the absence of a readily available gold standard it becomes necessary to evaluate serum diagnostic markers against radiological methods such as CT. Only two studies used an independent “gold standard” for all patients to compare the

Table 4

<table>
<thead>
<tr>
<th>Author, date and country</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinberg WM et al, 1985, USA</td>
<td>39 patients with pancreatitis were compared with 127 controls with abdominal pain</td>
<td>Diagnostic study</td>
<td>Sensitivity and specificity of two amylase serum assays for pancreatitis. Using upper limit of normal. Using best cut off</td>
<td>Amylase 1 = sensitivity 94.9% specificity 88.9%. Amylase 2 = sensitivity 94.9% specificity 86.0%. Amylase 1 = sensitivity 94.8% specificity 98.4%. Amylase 2 = sensitivity 92.3% specificity 100%</td>
<td>Various techniques used to confirm diagnosis including CT scans, laparotomy, USS scans. Patients referred to gastroenterology team with diagnosis based on serum amylase result. Problems with gold standard diagnosis of pancreatitis. Serum amylase used in diagnosis. Various gold standards used within the study. Chronic pancreatitis patients were excluded.</td>
</tr>
<tr>
<td>Lin XZ et al, 1989, Taiwan</td>
<td>62 consecutive patients with image verified pancreatitis, and 414 patients with an acute abdomen</td>
<td>Diagnostic study</td>
<td>Sensitivity and specificity of serum amylase at selected cut off three times above upper limit of normal</td>
<td>Sensitivity of serum amylase: 84% in image proven pancreatitis 92% in patients with or without image verified disease.</td>
<td></td>
</tr>
<tr>
<td>Clavien PA et al, 1992, Canada</td>
<td>352 consecutive attacks of acute pancreatitis in 318 patients</td>
<td>Diagnostic study</td>
<td>Sensitivity and specificity of serum amylase (<160 IU/l) compared with gold standards of CT or laparotomy</td>
<td>Sensitivity of serum amylase (<1000 IU/l) for detecting acute pancreatitis were 86%. Sensitivity of serum amylase (<1000 IU/l) for detecting acute pancreatitis at hospital admission were 86%.</td>
<td>Variable gold standards used.</td>
</tr>
<tr>
<td>Winslet M et al, 1992, UK</td>
<td>417 patients with acute pancreatitis</td>
<td>Diagnostic study</td>
<td>Sensitivity of serum amylase (<1000 IU/l) for detecting acute pancreatitis at hospital admission were 86%. Sensitivity of serum amylase (<1000 IU/l) for detecting acute pancreatitis at 48 hours were 86%. Mild cases 96.1%. Severe cases 87.4%. Alcohol subgroup 86%.</td>
<td>Mild cases 33.3%. Severe cases 48.2%. Alcohol subgroup 76%.</td>
<td>Not all patients had CT.</td>
</tr>
</tbody>
</table>
diagnostic test under consideration. Despite this weakness all the above studies except one reported sensitivities below 95%, especially in alcohol related pancreatitis cases.

CLINICAL BOTTOM LINE

In patients presenting to the emergency department with acute abdominal pain a normal serum amylase concentration is not sufficiently sensitive to rule out the diagnosis of acute pancreatitis.

Ultrasonic guidance and the complications of central line placement in the emergency department

<table>
<thead>
<tr>
<th>Author, date and country</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randolph AG et al, 1996, USA</td>
<td>Eight randomised controlled studies identified from Medline search from 1966 to 1995 Studies were using operators with low experience but no studies were in the emergency department</td>
<td>Meta-analysis</td>
<td>Meta-analysis of the relative risk of various clinical variables</td>
<td>Central line placement failure 0.32 (0.18 to 0.55) Complications during catheter placement 0.22 (0.10 to 0.45) Need for multiple catheter placement attempts 0.60 (0.45 to 0.79)</td>
<td>Medline search only, no systematic review</td>
</tr>
<tr>
<td>NICE guidelines, 2002, UK</td>
<td>Systematic review of the literature</td>
<td>Systematic review and meta analysis</td>
<td>Recommendations</td>
<td>Use of 2-D USS should be considered in most clinical situations where a central line is necessary electively or in an emergency No. failed catheter placements RR: 0.16 (0.09 to 0.3) No. complications odds: 0.36 (0.17 to 0.36) risk of failure RR: 0.39 (0.39 to 0.88)</td>
<td>Poor search strategy</td>
</tr>
<tr>
<td></td>
<td>20 RCTs evaluating ultrasound guidance for central line placement found</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only two were performed in the emergency room setting, with seven in ICU, and the remainder in elective scenarios</td>
<td></td>
<td></td>
<td></td>
<td>Grades of recommendation not provided</td>
</tr>
<tr>
<td></td>
<td>Only four studies were clearly performed by non-anaesthetists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miller AH et al, 2002, USA</td>
<td>122 emergency medical patients designated as “difficult insertions” randomised to the Landmark technique (n = 71) or 2-D USS guidance technique (n = 51) Difficult patients defined as peripheral vascular disease, coagulopathy, obesity, abnormal anatomy, or history of intravenous drug misuse</td>
<td>Cohort study</td>
<td>Time from needle touching skin to successful flashback</td>
<td>Number of attempts Complications</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Landmark group 463 s +/− 627 s SS group 93 s +/− 176 s p<0.0001</td>
<td>Landmark group 3.54 +/− 2.7 USS group 1.55 +/− 1 p<0.0001 Landmark group 14% USS group 12% p = 0.780</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical scenario

You are evaluating a 90 kg acutely dyspnoeic diabetic woman in the emergency department. She has a history of left ventricular failure and was an inpatient only two weeks ago with a small myocardial infarction. Her BP is only 90/50 and you feel that she is a high risk patient with poor peripheral venous access who may need high dependency care possibly with inotropes, and you therefore decide that a central line would be of great benefit. Your department has just bought a handheld USS probe and you wonder whether it is worth having a go with this rather than your usual blind landmark technique.
Three part question
In [patients in the emergency department requiring a central line] is [USS guidance better than blind landmark techniques] at [reducing the complications of insertion]?

Search strategy
Medline 1966-07/03 using the OVID interface. [(exp Ultrasonography/ OR ultrasound.mp) AND (exp Catheterization, Central Venous/ OR central venous catheter.mp OR central line.mp)] LIMIT to human AND English

Search outcome
Altogether 349 papers were found of which two represented the best evidence. This included a meta-analysis and an additional paper. In addition a second meta-analysis not indexed on Medline was identified by cross referencing (table 5).

Comment(s)
Two meta-analyses were identified in this area and only one additional paper could be found that neither meta-analysis included. Both meta-analyses provide strong evidence that USS guided placement significantly reduces complications during catheter placement, number of attempts at insertion and reduction in the number of attempts at insertion for both neck and femoral line insertion. In addition and the NICE meta-analysis provides evidence that insertion time is quicker although this evidence is less convincing. NICE also imply that if used regularly the cost implication could be as little as £10 per patient although they acknowledge a projected £29 million cost for initial NHS implementation for equipment and training.

► CLINICAL BOTTOM LINE
There is good evidence that USS guided placement of central lines reduces the complication rate associated with this procedure.

The utility of the tongue blade test for the diagnosis of mandibular fracture

Report by Rashmi Malhotra, Medical Student
Checked by Joel Dunning, RCS Research Fellow

Abstract
A short cut review was carried out to establish whether the tongue blade test is useful in the clinical assessment of patients with mandibular trauma. Altogether 269 papers were found using the reported search, of which two presented the best evidence to answer the clinical question. The author, date and country of publication, patient group

<table>
<thead>
<tr>
<th>Author, date and country</th>
<th>Patient group</th>
<th>Study type [level of evidence]</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alonso LL and Thomas TB, 1995, USA</td>
<td>110 consecutive patients in the emergency department with jaw pain</td>
<td>Diagnostic study</td>
<td>Patient ability to grasp a tongue blade/depressor between his teeth and hold the blade against a twisting motion, with the ability to crack the tongue blade on both sides defined a negative test. Inability to crack tongue blade on both sides of the mandible defined a positive test</td>
<td>Sensitivity of tongue blade test: 45 positive of 47 fractures, sensitivity 95.7%, CI (85.5 to 99.5%)</td>
<td>No sample size estimates—sample used too small</td>
</tr>
<tr>
<td>Exclusion criteria: patients unable to cooperate because of age, language barrier, inability to open mouth because of pain, intoxication or head injury</td>
<td></td>
<td></td>
<td></td>
<td>"Gold standard" radiologist interpretation</td>
<td></td>
</tr>
</tbody>
</table>

Robert A et al, 1998, USA	119 patients with jaw pain after trauma presenting at the emergency department	Diagnostic study	Patient ability to grasp a tongue blade/depressor between his teeth by and then to hold the blade against mild resistance by the examiner	Sensitivity of tongue blade test: 42 positive of 44 fractures, sensitivity 95%	Single radiologist to report radiographs—no double reporting
Exclusion criteria: airway compromise, inability to perform or cooperate with clinical examination, edentulousness				No OPG despite panoramic series known to be more sensitive than mandibular series in detecting mandibular fracture	
Inability to hold tongue blade against resistance on either hemimandible defined as a positive test	Specificity of tongue blade test: 75 non-fractures, specificity 63.5%, CI (50.4 to 75.3%)	No interobserver variability measurements			
		No sample size estimates—sample used too small			
studied, study type, relevant outcomes, results and study weaknesses of these best papers are tabulated. A clinical bottom line is stated.

Clinical scenario
You are evaluating a patient who has attended the emergency department having just been punched on the jaw. He is having difficulty opening his mouth and talking but you can see no step deformity or loose teeth. You recall that while you were on elective you saw the tongue blade test being used routinely in America to select patients for mandibular imaging. For this test the patient is asked to bite on the tongue blade and if the examiner can break the blade while the patient grips it, the patient does not need a mandibular radiograph. You wonder whether this is a sensitive test to use in this patient.

Three part question
In [patients with mandibular trauma] is [the tongue blade test] a good diagnostic test for [mandibular fracture]?

Search strategy
Medline 1966-7/03 using the OVID interface. ((mandibular fracture.mp.OR exp Mandibular Fractures/) OR ((exp fractures OR fracture$.mp) AND (exp mandible OR mandible$.mp or mandibular.mp))) AND exp diagnosis OR diagnosis.mp AND maximally sensitive RCT filter LIMIT to human AND English.

Search outcome
Altogether 269 papers were found of which two were relevant and are listed in table 6.

Comment(s)
No confidence intervals were calculated by Roberts et al for the reported sensitivity of the tongue blade test so we calculated this ourselves: sensitivity 95.4% (CI 84.53% to 99.44%). The confidence intervals are comparatively wide and so the tongue blade test could not stand on its own as a single diagnostic tool in screening for mandibular fractures since missing these fractures can lead to serious long term complications.

The high sensitivities reported by both these studies do suggest, however, that the tongue blade test is a useful screening tool in evaluating patients with mandibular fracture but other clinical predictors must also be considered.

CLINICAL BOTTOM LINE
The tongue blade test is useful in evaluating patients with possible mandibular fracture
