patients than they used to. We need to show that A SHOs (male or female) saw a lot of patients thoroughly but our impression is that some and it would be difficult to quantify this. It is changes in the delivery of emergency care

with the sex of the and worked a full shift rota averaging 52 hours working between February 1999 and July 2001 (p = 0.013; unpaired t test). Male SHOs saw on average 217.5 patients (range 1121 to 2659) more than female SHOs (range 1060 to 2644) (p = 0.001; unpaired t test). The median number of patients seen by SHOs with a surgical interest was 1831 (interquartile range 1624 to 2024), and by those with a medical/surgical interest was 1831 (interquartile range 2644) (p = 0.001; unpaired t test). Male SHOs could mean "inadequate analgesia" or "sedation (without analgesia)."

test). Male SHOs may induce tolerance, or simply do not follow the traditional dose response curve, making the interpretation of a qualitative drug level unreliable. Additionally, it is unclear from the how the diagnosis and disposition were defined or proved, as no outcome data were presented. It is unclear that outcomes would be changed by the test results, given the poor intraobserver agreement reported. Among the substances included in the final analysis, clearly tricyclic antidepressants (TCA) are of great concern. However, the electrocardiogram may be a better prognostic indicator of TCA poisoning, and may be a more sensitive indicator of "drug presence" than drug concentrations. In addition, it is our belief that acetaminophen is the only drug screen that has been shown to have a clinical impact in intentionally self poisoned patients.6

The diagnosis and management of the self poisoned patient is centred on a careful history and physical examination. Directed adjuncts such as an ECG and acetaminophen concentration may influence management and disposition. We would caution against the use of broad testing of the self poisoned patient as a guide to medical decision making. Even if this technology was widely available and economically viable, we question its utility as, in most cases, it is unlikely to affect the management of the self poisoned patient.6

References

Authors’ reply
Hower's concern about the term “relative analgesia” pertaining to our recent description of nitrous oxide analgesia in children is noted. This is actually a term that has been used to describe nitrous oxide analgesia for many years. It first appeared in the dental literature and was used originally to describe situations where continuous flow/variable concentration nitrous oxide was administered, often via a nasal mask. Other authors looking at the risk of aspiration using nitrous oxide analgesia used the term “relative...
analgesia’ when studying 50% nitrous oxide/oxygen (Enontox). The term does not appear to have been used in any of the emergency medicine literature pertaining to nitrous oxide that we have seen.

The term continues to be used in contemporary literature “and in 2001 Lahoud et al. described relative analgesia as having the child be the only patient remaining conscious deliver 100% O₃ if needed. Certainly we found in our study that distraction techni-

cues are easily done in conjunction with this method of analgesia and form an important part of it. We have used the term “relative analgesia” in our institution for many years, which is why it was included in our study. The term has also persisted in the name of the equipment used to administer continuous flow/variable concentration with the Quantil-

flex RA machine originally manufactured by Cyprane, Keighley, England and now by Matrix Medical, New York.

We agree with Howes that there is enough confusion in the semantics of the literature on sedation/analgesic techniques without rejuvenating old terminology. However, perhaps the term “relative analgesia” may be useful in describing analgesia by inhalational techniques alone, which are becoming more common using agents such as nitrous oxide, methoxyflurane, and nitrous oxide/sevoflur-

ane mixtures. Nitrous oxide provides analgesia, amnesia, and mild amnesia obtained with maintenance of verbal contact and predominantly intact laryngeal reflexes. No other single agent does this.

G J Browne, A Frampton, L T Lam, M G Cooper, L G Lane
Department of Emergency Medicine, The Children’s Hospital of Westmead, Sydney, Australia

Correspondence to: Dr G J Browne; garybch@chw.edu.au

References

Climbie Inquiry sets new standards

King and Reid highlight a number of standards relating to child protection proce-

dures within emergency departments. In January 2003, Lord Deben published his report of the Victoria Climbie Inquiry which contains further recommendations regarding healthcare arrangements for children and procedures for investigation of possible delin-

erate harm. Those relevant to emergency department practice mainly concern admin-

istrative standards, such as recording the name of the “primary carer” for each child attending the department and obtaining information on previous attendances at other hospitals when concerns about deliberate harm have been raised. The recommendations have various suggested timescales for imple-

mentation ranging from three months to two years from the publication date and we would urge all those involved with child protection to read the report summary (available at http://www.victoria-climbie-inquiry.org.uk/index.htm) and check that their practice complies with the recommendations.

J L Louis
Emergency Department, Taunton and Somerset Hospital, UK

S J Bridges
Paediatric Department, Taunton and Somerset Hospital

Correspondence to: Dr J L Louis, Emergency Department, Taunton and Somerset Hospital, Taunton TAI 5DA, UK; jason.louis@stnh.nhs.uk

Reference

Steering wheel spin

Nigam and Cutter totally fail to present evidence to justify the claim that “Welsh emergency vehicles examined exhibited an unacceptable level of bacterial contamination”.

What is more, a press release from the editorial team to local newspapers led Madeline Brindley of the Western Mail to write, “Dirty ambulances infested with huge amounts of harmful bacteria are carrying seriously ill patients to hospital in Wales, according to a report published today. The new research discovered that...”

The authors make no attempt to quantify levels of bacteria for organisms that are expected to be present in an environment occupied by people. Inevitably, steering wheels will be home to Staphylococcus epider-

mis and viridans group streptococci, as they represent normal skin commensals. Bacillus sp are ubiquitous environmental organisms. Similar comments can also be made for areas sampled throughout the ambulances.

The method used by Nigam and Cutter is described as a preliminary investigation and this pilot study did identify shortfalls in cleaning practices in use at the time of the study. These included a lack of designated cleaning equip-

ment for ambulances, insufficient time for thorough cleaning, and lack of suitable decon-

amination processes for medical equipment.

Most organisms identified in the study were unlikely to pose any threat of infection to patients or ambulance personnel. This was clearly stated in our article, but sadly was often ignored in the subsequent press reports, resulting in public concern.

Having identified that there were shortfalls in cleaning practices, action was required. The Welsh Ambulance Trust responded immediately to the results of the study and, supported by one of the authors (JC), took action to improve standards of cleanliness. This included the following:

- The Infection Control Committee and Regional Infection Control Teams continued to monitor cleanliness through regular environmental audits;

- Colour coded cleaning equipment has been introduced to prevent cross contamina-

tion during cleaning and standardisation of detergents and disinfectants has been completed;

- All vehicles have now been provided with “spillage kits” to absorb fluid spills;

- A chlorine releasing disinfectant is pro-

vided for each vehicle for prompt decontamination of blood and body fluids;

www.emjonline.com

Children and mini-magnets: comments and suggestions

I read with interest “Children and mini-magnets” for I had previously listed similar events. The authors illustrate the difficulty of separating attracted magnets when avoiding further trauma to the enfraged tissue, as the usual methods—of sliding the magnets apart, or using standard instruments—cannot be used. It is possible to “short out” the effective strength of a magnet (in the same way that the soft iron keeper of a horseshoe magnet greatly diminishes its external attraction) by putting a high permeability material between the poles. One such material is “Permalloy,” and pieces and sheet can be formed around a magnet. (McCormick et al do not seem to list the magnetisation directions in the shape they encountered, so one cannot make any more specific suggestions.) Permalloy might be available in your friendly neighbourhood physics department. Another technique is to put a third similar magnet against one of the two problem ones.

Here in the USA, powerful magnets are used to hold ear “rings” or ear studs in place. A friend, who has given magnetic jewelled studs as science encouragement to pre-teen girls, has received thanks from their mothers: the mothers emphatically prefer the magnets to pierced ears.

I am curious about the origin of the Sheffield magnets: extremely powerful ones are found in discarded computer hard drives, but they have irregular shapes.

L Finegold
Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA; LFinegold@Drexel.edu

Radiology in paediatric cervical spine injury

I read with interest the letter by Smart et al regarding the assessment of paediatric cervical spine injuries. It would certainly appear that many children in their cohort were radiographed unnecessarily according to current guidelines. However, I would hope that the practice in their institution has changed dramatically in the six years since the group attended. Current guidelines on selection of patients for imaging are based primarily on adults. In the NEXUS group, only 30 children had a cervical spine injury, and in the Canadian c-spine group, there were no children at all.

Extrapolating results to children who may be distressed or uncooperative should be performed with caution.

The low prevalence of cervical spine injuries in children makes guidelines difficult to create. In an 11 year analysis of the Trauma Audit Network Database, only 239 children (of 19 538 with major trauma) were identified as having a cervical spine fracture and 21 with spinal cord injury without radiological abnormality (unpublished data).

I am concerned that the authors feel that a single lateral projection should be adequate. The evidence for omitting the PEG view is based on small case series or questionnaires, and certainly the odontoid synchondrosis should be ossified by the age of 7.

Imaging of the paediatric cervical spine remains a difficult problem. As the authors confirm, there is no substitute for adequate clinical assessment, but where this is not possible, every effort should be made to rule out a potentially devastating injury.

B W Martin
Emergency Department, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK; bruce.martin@virgin.net

References

Emergency department investigation of deep vein thrombosis

Klitroy et al should be commended for highlighting the difficulty of point of care (“near patient”) testing in general, and in emergency medicine in particular. They, however, failed to highlight some important points that may have been significant confounding variables in this study. Firstly, the authors quite rightly pointed out the qualitative nature of the SimpliRED test (DD) assay and the inherent possibility for interobserver variation. Although this is a “simple” assay and comparatively accurate in experienced hands, there is a learning curve in performing and interpreting the results that the authors failed to emphasise. How steep or otherwise was the learning curves of the doctors assessing the SimpliRED test? The robustness of the data may then be improved if interobserver reliability was measured, for example by k and weighted k statistics. Secondly, cut off points are critical in diagnostic testing because they determine the assay sensitivity and specificity. For example, if the DD cut off is set too low, then the test is too sensitive and not specific, so almost everyone ends up being positive and the test loses meaning. What was the cut off value for DVT diagnosis in this study? Was it based on receiver operator characteristic (ROC) curves (a scientifically valid method of determining diagnostic cut off values)? Differences in cut off values may explain the differences observed in the diagnostic performance of the assay in this study and wells original data. Finally, to ensure good applicability, when choosing a DD assay it should be verified that the assay has been studied in a patient population similar to that in which it would be used. Did the authors extrapolate a cut off point for DVT diagnosis from the manufacturer of the assay? If so, was their study population similar to that of the manufacturer’s?

A Wakai
Department of Emergency Medicine, Beaumont Hospital, Dublin 9, Republic of Ireland; wakai@beandico.ie

References

Fractured clavicle and vascular complications

A 55 year old right handed man presented with a three month history of left arm pain and preordial chest discomfort. His symptoms had started three months previously after a heavy game of squash. Three years before the acute episode, he was involved in a motorcycle accident and had sustained a left mid-clavicular fracture.

On clinical examination he was in sinus rhythm and the supine blood pressure was 146/94 mm Hg in the right arm. He had a cold left arm with no recordable blood pressure. The left axillary, brachial, and radial pulses were absent. A bruit was audible over the left subclavian artery. The fasting total cholesterol was 4.4 mmol/l.

The chest radiograph showed non-union and displacement of the fragments of the left clavicle. Three dimensional contrast enhanced magnetic resonance angiography (CE-MRA) showed a small false aneurysm (diameter 1.5 cm) in the mid-portion of the left subclavian artery (see fig 1). In addition there was a stenosis of the left subclavian artery adjacent to the aneurysm, and an intraluminal thrombus, immediately distal to the point of stenosis. The aneurysm probably resulted from insult to the subclavian artery by the clavicular fracture and aggravated by squash playing.

Percutaneous balloon angioplasty with stent deployment to the left subclavian artery was attempted. The procedure was complicated by acute thrombus formation requiring intra-arterial thrombolysis with streptokinase. Restoration of blood flow was achieved by a reverse vein graft bypass between thoraco-acromial and brachial arteries.

Injury to the subclavian artery should be considered in all patients who complain of ischaemic symptoms in the arm after clavicular fracture. Furthermore, this case
Correspondence to: Dr A K J Mandal, Department of Cardiology, Wexham Park Hospital, Slough, Berkshire and Imperial College, London, UK

A K J Mandal
Department of Cardiology, Wexham Park Hospital, Slough, Berkshire and Imperial College, London, UK

J Jordan
Departments of Cardiology and Emergency Medicine, Wexham Park Hospital

C G Mouisour
Department of Cardiology, Wexham Park Hospital and The Royal Brompton Hospital

Correspondence to: Dr A K J Mandal, Department of Cardiology, Wexham Park Hospital, Wexham Street, Slough, Berkshire SL2 4HL, UK; akjm@mac.com
doi: 10.1136/emj.2003.009761

Aytical antipsychotics not recommended for control of agitation in the emergency department

We read with concern the article by Yildiz et al, regarding the recommended use of atypical antipsychotics for the control of agitated patients in the emergency department.1 Our concern rests mainly with the control of agitation secondary to drug ingestion, particularly sympathomimetic drugs of misuse (cocaethylene, MDA “ecstasy”, and ampheta-
mines), and antidepressants (SSRIs, tricyclic antidepressants, MAOIs).

It can be difficult to distinguish with certainty, the diverse aetiologies of acute confusion/agitation, and therefore the sedative agent of choice should be safe and effective regardless of the cause. In patients presenting with drug induced agitation, or when the aetiology of the agitation is not established (particularly in younger adults), the use of atypical antipsychotics such as risperidone, ziprasidone, and olanzapine may result in adverse drug reactions including serotonin syndrome, neuroleptic malignant syndrome, QT prolongation and subsequent ventricular arrhythmias (including torsades de pointes), arrhythmias without QT prolongation, or extrapyramidal features including dystonic reactions.2

In the setting of drug induced agitation, the National Poisons Information Service (London) strongly advocates the use of care-
fully titrated, long benzodiazepine sedation. This is because the benzodiazepines (for example, diazepam, lorazepam, and midazolam) are well tolerated, with a high therapeutic index, and are not implicated in any of the above reactions. They have proved safety and efficacy in animal experiments and widespread clinical use for sympathomimetic drug related agitation.3 4 They also possess dose dependent efficacy that is easily titratable, and have established seizure pro-
phylaxis and seizure terminating activity.4 5 Benzodiazepines have no arrhythmogenic potential with therapeutic or toxic exposures, and antihypertensive and arrhythmia pre-
ventive activity in sympathomimetic drug toxicity, and proved efficacy (in a random-
ised, double blind, placebo controlled trial) in cocaine associated acute coronary syndromes.6

We question why one would want to put an already unstable patient at risk of further harm with the use of potentially dangerous atypical antipsychotics, when an established safe, efficacious, rapidly acting, cheap alternative (benzodiazepines) is readily available?

K R Whelan, P I Dargan, A L Jones
National Poisons Information Service, Guy’s and St Thomas’ NHS Trust, London, UK

N O’Connor
Emergency Department, St Thomas’ Hospital, London, UK

Correspondence to: Dr K Whelan, National Poisons Information Service, Avonley Road, New Cross, London SE15 5ER, UK; kwhelan@gstt.nhs.uk
doi: 10.1136/emj.2003.005314

References

Nothing ever changes...

Readers may be interested in the following abstract from the Lancet of October 1869, “The Lancet investigation into the adminis-
tration of the out-patient department of the London hospitals”.

On the morning in question, 120 patients were seen and dismissed in an hour and ten minutes, or at the rate of 35 seconds each. Who shall say what mistakes were made? None can tell...they are dismissed with a doubtful dose of physic, ordered almost at random, and poured out of a huge brown jug, as if the main object were to get rid of a set of troublesome customers, rather than to cure their ailments. A physician and surgeon have been appointed to stand inside the doors of the waiting room. They are to receive and examine the patients as they enter and distribute them amongst the various departments, according to their judgement. They are also authorised “to refuse treat-
ment to any person who appears not to be a fit object of charity.”

Naturally desirous of gaining all the experience possible, the house-sur-
geons have been in the habit of keeping all the interesting cases under their own care, and of sending the chronic and incurable to the out-patient room...

There are three articles in all,** which make for a fascinating read. If the language used were updated slightly, they could easily have been written 150 years later.

Acknowledgements
I am grateful to Dr Sue Barnes for drawing these articles to my attention.

E Walker
Accident and Emergency Department, Dewsbury Hospital, Halifax Road, Dewsbury, West Yorkshire WF13 4HS, UK; dr.etd@ntlworld.com
doi: 10.1136/emj.2003.005314

References
1 Lancet 1869;i:553.
2 Lancet 1869;i:577.
3 Lancet 1869;i:677.

BOOK REVIEWS

The 5 minute toxicology consult for PDA

Why am I writing a review of an e-book?

PDAs are small but immensely capable mobile computers with greater processing power than the desktop machines of five years ago. These handheld computers have matured from simple address books to devices that can word process, email, run presentations, manage databases, and (this is the best bit) switch on every television in my house.

Their basic memory varies from 8–64 megabytes but this may be expanded into the gigabyte range. This immense memory together with the ultra portability of the PDAs means that they can always be in your pocket offering near infinite text storage. A PDA may be the perfect way to carry your textbooks with you.

This toxicology program is supplied on a CD-ROM together with nine other programs all from Lippincott Williams and Wilkins. The CD is compatible with Windows CE/PocketPC and PalmOS operating systems; this review used a Compaq iPAQ running PocketPC. The purchased program is the only one with unlimited access but all the others may be used up to 15 times on a trial basis. As the program is supplied on a CD it must be...
downloaded via the computer used to synchronise with the PDA rather than directly to the device. Once the CD is inserted however, the process requires both internet access and some intuition. The 15 item alphanumeric code supplied with the disc must be entered into the Lippincott Williams and Wilkins' website together with the unique code of the PDA. This generates another code on the web site that then may be used to unlock the program.

Once up and running, its appearance is straightforward. Two narrow icon bars, one at the top of the page and another down the side, leave plenty of space for the text. The text size is alterable from "quite hard to read" to "enormous" and may be made to fit the screen. Using the basic functions fortunately did not require access to the scanty "help files". Access to the files is either via the main index (including the ICD-9-CM index) or the table of contents (TOC). Using the TOC option is simpler although this has no search option. Topics are divided into "General approach", "Patient presentations with toxicological causes", "Antidotes", and "Chemical and Biological agents". This is a 4 megabyte text only program. There are lots of entries. Each entry has a similar format, being divided up into "Smart tabs" of Basics, Diagnosis, Treatment, Follow up Indications, Contraindication and Adverse Effects, Dosage and Method of Administration, Pitfalls, and Miscellaneous. Sensibly not all "Smart tabs" are available for each entry. Some differences are seen between this North American e-book and UK practice. These include the recommendation for induced emesis for decontamination or the use of oral N-acetylcysteine in paracetamol poisoning. The vast majority of the text, however, reflects transatlantic agreement.

A facility for written and even spoken notes exists and the entries are cross indexed. However, as yet, there is no search function and the text is not alterable. The extensive "Smart tabs" are an advantage although this makes the text difficult to read and introduces the potential for some entertaining misunderstandings. For example, "Automated implantable cardiac defibrillators usually are placed in patients with a history of a near-death experience" and "The [defibrillation] current that is delivered through the padds or paddles of the machine while on the patient’s chest". Confusingly, the text alternates between the perspective of an EMT observing a paramedic and that of a paramedic undertaking a procedure. This risks leaving readers with the inappropriate impression that, for example, an EMT's responsibility to correct intubation of the oesophagus.

The book contains important errors. It implies that the carboles are level with the angle of the jaw; that crystalloids remain within the vascular compartment; that selection of the correct diameter of nasopharyngeal tube is determined by the patient's neck size and that of a paramedic undertaking a procedure. This risks leaving readers with the inappropriate impression that, for example, an EMT's responsibility to correct intubation of the oesophagus.

The book contains important errors. I implies that the carboles are level with the angle of the jaw; that crystalloids remain within the vascular compartment; that selection of the correct diameter of nasopharyngeal tube is determined by the patient’s neck size and that of a paramedic undertaking a procedure. This risks leaving readers with the inappropriate impression that, for example, an EMT’s responsibility to correct intubation of the oesophagus.

The book contains important errors. It implies that the carboles are level with the angle of the jaw; that crystalloids remain within the vascular compartment; that selection of the correct diameter of nasopharyngeal tube is determined by the patient’s neck size and that of a paramedic undertaking a procedure. This risks leaving readers with the inappropriate impression that, for example, an EMT’s responsibility to correct intubation of the oesophagus.