Best evidence topic reports (BETs) summarise the evidence pertaining to particular clinical questions. They are not systematic reviews, but rather contain the best (highest level) evidence that can be practically obtained by busy practicing clinicians. The search strategies used to find the best evidence are reported in detail in order to allow clinicians to update searches whenever necessary. Each BET is based on a clinical scenario and ends with a clinical bottom line that indicates, in the light of the evidence found, what the reporting clinician would do if faced with the same scenario again. The BETs published below were first reported at the Critical Appraisal Journal Club at the Manchester Royal Infirmary or placed on the BestBETs website. Each BET has been constructed in the four stages that have been described elsewhere. The BETs shown here together with those published previously and those currently under construction can be seen at http://www.bestbets.org. Four BETs are included in this issue of the journal.

Role of flexion/extension radiography in paediatric neck injuries

Report by Elspeth Pitt, Specialist Registrar
Checked by Shobhan Thakore, A&E Consultant

Abstract
A short cut review was carried out to establish the potential utility of flexion/extension views of the cervical spine in children with neck injuries. Using the reported search, 51 papers were found, of which three presented the best evidence to answer the clinical question. The author, date, and country of publication, patient group studied, study type, relevant outcomes, results, and study weaknesses of these best papers are tabulated. A clinical bottom line is stated.

Clinical scenario
A child attends the department; he has been involved in a high speed road traffic accident, complains of neck pain and midline neck spinal tenderness, but has no neurological signs/symptoms. Static cervical spine radiology (lateral, AP, and odontoid views) reveal no abnormality. You wonder if flexion/extension x rays would show any significant injury/instability.

Three part question
In [a neurologically intact child with neck pain following trauma but normal plain x rays] do [flexion/extension x rays] aid [diagnosis of ligamentous or soft tissue injury with instability]?

Search strategy

Medline: [exp neck injuries OR neck trauma.mp OR cervical spine trauma.mp OR exp spinal injuries OR exp spinal cord injuries OR exp spinal fractures OR exp fractures OR cervical spine injuries.mp OR exp dislocations OR exp cervical vertebrae OR cervical spinal cord trauma.mp OR exp spinal cord compression] AND [flexion-extension.ti OR dynamic cervical spine radiography.mp OR flexion-extension radiography.mp OR flexion-extension cervical spine radiography.mp OR flexion-extension radiographs.mp] AND [exp joint instability OR ligamentous injury.mp OR ligament injury.mp OR cervical vertebrae OR exp fractures OR ligamentous instability.mp OR exp soft tissue injuries OR soft tissue injury.mp] AND [BestBETs paediatric filter] LIMIT to human AND English language.

Embase: [exp neck injuries OR neck trauma.mp OR cervical spine trauma.mp OR exp spinal injuries OR exp spinal cord injuries OR exp spinal fractures OR exp fractures OR cervical spine injuries.mp OR exp dislocations OR exp cervical vertebrae OR cervical spinal cord trauma.mp OR exp spinal cord compression] AND [flexion-extension.ti OR dynamic cervical spine radiography.mp OR flexion-extension radiography.mp OR flexion-extension cervical spine radiography.mp OR flexion-extension radiographs.mp] AND [exp joint instability OR ligamentous injury.mp OR ligament injury.mp OR cervical vertebrae OR exp fractures OR ligamentous instability.mp OR exp soft tissue injuries OR soft tissue injury.mp] AND [BestBETs paediatric filter] LIMIT to human AND English language.
Use of troponin for the diagnosis of myocardial contusion after blunt chest trauma

Report by Lorna Jackson, SpR in Emergency Medicine
Checked by Alison Stewart, SHO III in Emergency Medicine
doi: 10.1136/emj.2004.022822

Abstract
A short cut review was carried out to establish the utility of troponin levels in diagnosing myocardial contusion following blunt chest trauma. Using the reported search, 75 papers were found, of which six presented the best evidence to answer the clinical question. The author, date, and country of publication, patient group studied, study type, relevant outcomes, results, and study weaknesses of these best papers are tabulated. A clinical bottom line is stated.

Clinical scenario
A 45 year old man attends the emergency department after being involved in a road traffic accident. He has sustained a blunt chest injury during the impact and has bruising across his chest wall. His ECG shows non-specific ST segment changes and the chest radiograph are normal. You wonder about the benefit of performing a troponin level to aid the diagnosis or exclusion of myocardial contusion.

Three part question
Is [troponin] level a good indicator of underlying [cardiac damage] after [blunt chest trauma]?

Search strategy
Medline 1966-11/04 using the Ovid interface. [exp troponin OR troponi$.mp] AND [exp Wounds, Nonpenetrating OR exp Thoracic Injuries OR blunt chest injury.mp OR blunt chest trauma.mp OR blunt thoracic injury.mp OR blunt thoracic trauma.mp] AND [exp Heart Injuries OR myocardial contusion.mp OR cardiac contusion.mp OR myocardial damage.mp
| Table 1 |
|-------------------|-------------------|-------------------|-------------------|
| **Author, date and country** | **Patient group** | **Study type (level of evidence)** | **Outcomes** | **Key results** | **Study weaknesses** |
| Adams JE, 1997, USA | Patients with suspected cardiac trauma | Review article including 3 relevant papers | Serial TnT and total CK CK and Tnl over first 72 hours and ECHO Tnl, CK and CK-MB at 12 and 24 hours and ECHO Tnl v Tnl | Sensitivity 0.63 and specificity 0.71 for Tnl Sensitivity 1 and specificity 0.68 for Tnl Specificity 0.72 for Tnl Tnl specificity better than Tnl specificity | Excluded those with pre-existing cardiac disease. Very small numbers involved |
| Ferjani M et al, 1997, France | 128 consecutive patients who had suffered blunt chest trauma. All patients had Tnl measured at admission, 4 and 24 hours after admission. Cardiac contusion defined as abnormal echocardiography compatible with contusion, severe cardiac rhythm abnormality, severe cardiac conduction abnormality or haemopericardium. Excludes patients who had suffered blunt chest trauma | Prospective observational study | Sensitivity and specificity of troponin T >0.5 ug over 1st 24 hours | ROC curve analysis performed AROC = 0.69 with 95% C.I. of 0.56 to 0.80 | Excludes patients with pre-existing coronary artery disease. |
| Mori F et al, 2001, Italy | 32 patients with clinical or radiological signs of acute blunt chest trauma. All patients had cTnl measured at 6, 12, 24, 48 and 96 hours post injury. Cardiac contusion defined as abnormal trans-oesophageal echocardiography | Prospective observational study | Sensitivity of raised troponin | All with normal or minimally raised Tnl (<0.4 ng/ml) had a normal echo (mean 0.6 +/-1.4) | Excluded patients with pre-existing cardiac disease |
| Kaye P et al, 2002, UK | Patients with suspected myocardial contusion. ECG and ECHO used to define significant blunt cardiac injury. | Review article including 3 relevant papers | Utility of troponin to diagnose myocardial contusion | Specificity of raised troponin Mean Tnl was higher in those with an abnormal echo (mean 2.6 +/-1.6) p<0.0001 | Small numbers included in the study. |
| Sybrandy KC et al, 2003, Netherlands | Patients with suspected cardiac contusion | Review article including 2 further relevant papers | Utility of troponins to detect myocardial contusion | Sensitivity 100%, all with normal Tnl had no problems. Specificity 83–87.5% | One paper excluded intubated and haemodynamically unstable patients Small numbers involved in the trials. |

Study type
- Review article
- Prospective observational study

Outcomes
- Sensitivity
- Specificity
- ROC curve analysis
- AROC

Key results
- Tnl of >0.5 ug has sensitivity of 0.91 but specificity of 0.31, indicating that it is unreliable
- Tnl of >0.5 ug has sensitivity of 0.91 but specificity of 0.31, indicating that it is unreliable
- Mean Tnl was higher in those with abnormal echo (mean 2.6 +/-1.6) p<0.0001

Study weaknesses
- Only measured Tnl at admission, 4 and 24 hours. Used Tnl not Tnl of >0.5 ug is a high level.
- Small numbers included in the study.
- Papers used variable gold standards, abnormal ECG, clinically significant finding and/or ECHO.
- Small numbers involved in the trials. The diagnosis of significant blunt cardiac injury was made clinically.
Scorpion envenomation: does administration of antivenom alter outcome?

Report by Bernard Foëx, Consultant in Emergency Medicine (Manchester)
Checked by Lee Wallis, Consultant in Emergency Medicine (Cape Town)
doi: 10.1136/emj.2004.022830

Abstract
A short cut review was carried out to establish the clinical utility of antivenom in scorpion poisoning. Using the reported search, 69 papers were found, of which four presented the best evidence to answer the clinical question. The author, date, and country of publication, patient group studied, study type, relevant outcomes, results, and study weaknesses of these best papers are tabulated. A clinical bottom line is stated.

Clinical scenario
A woman presents to the emergency department after being stung by a scorpion, which was hiding in a bush of bananas in her local supermarket. She is in great pain and feels sick. You wonder whether she should be given an antivenom.

Scorpion envenomation: does antivenom reduce serum venom concentrations?

Report by Bernard Foëx, Consultant in Emergency Medicine and Critical Care
Checked by Lee Wallis, Consultant in Emergency Medicine
doi: 10.1136/emj.2004.022848

Abstract
A short cut review was carried out to determine if antivenom reduces serum venom concentrations. Using the reported search, 69 papers were found, of which four presented the best evidence to answer the clinical question. The author, date, and country of publication, patient group studied, study type, relevant outcomes, results, and study weaknesses of these best papers are tabulated. A clinical bottom line is stated.

Clinical scenario
A woman has been stung by a scorpion while buying bananas in her local supermarket. She is showing some signs of systemic envenomation and you wonder whether giving her antivenom will reduce her serum venom concentration.
Table 1

<table>
<thead>
<tr>
<th>Author, date, and country</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sofer S et al, 1994, Israel</td>
<td>Children admitted to PICU after scorpion envenomation. Comparison of 52 children given antivenom between 10 July 1985 and 1 July 1989 and 52 children treated without antivenom between 1 July 1989 and Dec 31 1992</td>
<td>Cohort</td>
<td>Duration of PICU stay</td>
<td>No significant difference</td>
<td>Historical comparison. Children treated without antivenom may have benefited from improved supportive care</td>
</tr>
<tr>
<td>Belghith M et al, 1999, Tunisia</td>
<td>Patients participating in a study on the efficacy of high-dose hydrocortisone after scorpion sting. Matched pair comparison of 135 patients given scorpion antivenom in addition to their trial medication</td>
<td>Cohort</td>
<td>Duration of hospital stay</td>
<td>No significant difference</td>
<td>Prevention of progression of symptoms 13% antivenom group, 10% control group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duration of hospital stay</td>
<td>No significant difference</td>
<td>Prevention of symptom progression 13% antivenom group, 9% control group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full recovery</td>
<td>49 in antivenom group, 52 in control group</td>
<td>Death 2 in antivenom group, 0 in control group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recovery</td>
<td>0% in antivenom group, 6% in control group</td>
<td>Death 0 in antivenom group, 0 in control group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinical improvement</td>
<td>50% in antivenom group, 64% control group</td>
<td>Retrospective review of patients recruited into another trial. Results not stratified according to hydrocortisone treatment</td>
</tr>
<tr>
<td>Aberou F et al, 1999, Tunisia</td>
<td>825 consecutive patients aged 10 or older presenting to a non-teaching hospital emergency department</td>
<td>Randomised placebo controlled trial of intravenous scorpion antivenom</td>
<td>Clinical improvement</td>
<td>55% antivenom group, 66% control group</td>
<td>Trial found to be underpowered to show any difference in mortality as mortality was so low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prevention of symptom progression</td>
<td>94% in antivenom group, 96% in control group</td>
<td>Prevention of symptom progression 94% in antivenom group, 96% in control group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hospital admission</td>
<td>13% in antivenom group, 9% in control group</td>
<td>Hospital admission 13% in antivenom group, 9% in control group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Death</td>
<td>No significant difference</td>
<td>Death 1 in each group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Effectiveness of antivenom according to sting admission interval</td>
<td>Antivenom more effective if sting admission interval <1 hour</td>
<td>Effectiveness of antivenom more effective if sting admission interval <1 hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local symptoms</td>
<td>Greater reduction in local pain and burning reported with antivenom</td>
<td>Local symptoms Greater reduction in local pain and burning reported with antivenom</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Systemic symptoms</td>
<td>Lower incidence of systemic symptoms in the antivenom group</td>
<td>Systemic symptoms Lower incidence of systemic symptoms in the antivenom group</td>
</tr>
<tr>
<td>Ghalim N et al, 2000, Morocco</td>
<td>275 patients with scorpion envenomation, 179 of whom were treated with antivenom (IM, SC or both routes)</td>
<td>Prospective cohort</td>
<td>Effectiveness of antivenom according to sting admission interval</td>
<td>Antivenom more effective if sting admission interval <1 hour</td>
<td>Statistical analysis of clinical features unclear. There appears to be a 50% baseline difference in incidence of systemic symptoms between the antivenom and no antivenom groups in favour of the antivenom group</td>
</tr>
</tbody>
</table>

Three part question
In [scorpion envenomation] does [antivenom serotherapy] [reduce serum venom concentration]?

Search strategy

Search outcome
Altogether, 69 papers were found, only four of which addressed the serum kinetics of scorpion venom after administration of antivenom.

Comment(s)
The vast majority of patients had only grade I envenomation. Serum venom concentrations were higher in grade II than grade I envenomations.

Two studies showed that one dose of antivenom administered intramuscularly was not effective in reducing serum venom concentrations. Intravenous antivenom was effective in reducing serum venom concentrations compared to controls in two studies. Higher doses were more effective. Two studies documented clinical improvements with antivenom treatment.

► CLINICAL BOTTOM LINE
There is good evidence that intravenous administration of antivenom reduces serum venom concentrations. Whether this is clinically relevant is open to question.
Table 1

<table>
<thead>
<tr>
<th>Author, date and country</th>
<th>Patient group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes</th>
<th>Key results</th>
<th>Study weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Rezende NA et al, 1995, Brazil</td>
<td>18 patients with signs of systemic envenomation</td>
<td>Cohort</td>
<td>Serum venom concentrations measured by ELISA before and after intravenous antivenom treatment</td>
<td>Venom antigens cleared 1 hour after antivenom</td>
<td>No serum venom kinetics in a control group not treated with antivenom</td>
</tr>
<tr>
<td>Krifi MN et al, 1999, Tunisia</td>
<td>147 children under 15 years with grade II and III scorpion envenomation, divided into 6 groups according to whether given 1 or 2 doses of antivenom (IM or IV) or IM and IV</td>
<td>Cohort</td>
<td>Intramuscular administration</td>
<td>No significant effect on toxicokinetic curve or recovery time, when only one dose given</td>
<td>Unclear whether retrospective analysis or prospective study. No apparent blinding</td>
</tr>
<tr>
<td>Ghalim N et al, 2000, Morocco</td>
<td>275 patients, of which 179 were treated with antivenom. Antivenom administered intramuscularly (77.6%) or subcutaneously (6.2%) or both (16.2%)</td>
<td>Prospective cohort study</td>
<td>Epidemiology of envenomation</td>
<td>Toxokinetics in grade I envenomation</td>
<td>No grade III (severe) envenomations</td>
</tr>
<tr>
<td>Hammoudi-Triki D et al, 2004, Algeria</td>
<td>182 patients (adults and children) stung by scorpions. Retrospective review of charts and blood results for those treated with intramuscular antivenom</td>
<td>Cohort</td>
<td>Epidemiology</td>
<td>No grade III (severe) envenomations</td>
<td>Retrospective review. Intramuscular rather than intravenous route used. Only one dose of antivenom given. Only 40 patients had post immunotherapy blood samples taken. Venom concentrations lower than in Krifi (1999) and Ghalim (2000) studies, although this may be due to ELISA differences</td>
</tr>
</tbody>
</table>

