

Effect size by study

Abstract 021 Figure 2

Method and results The review was conducted in accordance with the PRISMA and was registered on PROSPERO. We planned to conduct a meta-analysis if the data was suitable. Searches were conducted using pre-determined terms using MEDLINE and Embase databases. A hand search of the grey literature was also conducted. Studies eligible for inclusion were those: peer reviewed, conducted in the last 20 years, included a general population, and written in English. Risk of Bias was assessed by the QUIPS tool, and overall quality by GRADE. Searches, screening, data extraction, risk of bias and GRADE assessment were all conducted by two independent researchers.

Conclusions The search identified 1,071 results, after title and abstract review 47 underwent full text review. A further 26 were excluded following full text review (table 1).

The outcome of prevalence was extracted from 13 studies. They were dominated numerically by McNaughton *et al*'s study of 701,952,422 patients, with the next largest having 7,238. A meta-analysis was conducted and confirmed the prevalence finding of the largest study at 0.24 (95% CI 0.02–0.45) (see figure 1).

The persistence at follow of hypertensive ED readings was extracted from 7 studies, a random effects model was conducted demonstrating a pooled persistence of 0.55 (95% CI 0.34–0.75) (see figure 2).

Hypertension is common and the persistence of it at follow up adds credibility to ED's public health potential.

022 EVALUATING DIVERSION OF ALCOHOL RELATED ATTENDANCES: THE EDARA STUDY

¹Steve Goodacre, ¹Andy Irving, ¹Tracey Young, ¹Alicia O'Cathain, ¹Penny Buykx, ²Simon Moore. ¹University of Sheffield; ²Cardiff University

10.1136/emermed-2019-RCEM.22

Background Alcohol Intoxication Management Services (AIMS), commonly known as 'drunk tanks', provide an alternative to emergency department (ED) attendance for intoxicated adults at times of high incidence. The EDARA study evaluated the role of AIMS in the emergency care system and night time economy. Here we present findings describing AIMS activity and running costs, and estimating the effect of AIMS on ED attendance rates and ED user experience.

We identified six cities with AIMS and collected data relating to attendances and costs of running the service. We matched these cities with six cities without AIMS and used routine NHS data to estimate the effect of AIMS operation upon ED attendances during hours of AIMS activity. We also surveyed ED user experience over matched time periods of AIMS activity in cities with and without AIMS.

Mean attendance rates at the AIMS ranged from 2.7 to 11.8 per night. The mean running cost for an AIMS was £1635 per night (range £1075 to £2265) and the mean cost per attendance was £222.50 (range £132.27 to £583.8). Overall AIMS were associated with reduced ED attendances (-5.30 per night, p<0.05, 95% CI -9.62 to -0.62). However, the effect varied markedly between individual AIMS, ranging from 4.93 fewer attendances to 3.32 additional attendances per night. There was no significant effect from AIMS on ED user aggregate service rating score (coefficient 0.060, p=0.372), perception of feeling threatened (-0.037, p=132), aggregate negative experience score (-0.147, p=0.196), and overall service rating score (0.25, p=0.440).

AIMS vary markedly in activity, running costs and effect on ED attendances, so estimating overall effects is probably inappropriate. The most active and expensive AIMS appeared to be associated with the greatest effect on ED attendances. We identified no effect on ED user experience.

PALPITATION PATIENTS IN THE OUTPATIENT SETTING?

¹Matt Reed, ²Neil Grubb, ²Chris Lang, ³Rachel O'Brien, ³Kirsty Simpson, ³Mia Padarenga, ³Alison Grant, ⁴Sharon Tuck, ⁵Liza Keating, ⁶Frank Coffey, ⁷Lucy Jones, ⁸Tim Harris, ⁹Gavin Lloyd, ¹⁰James Gagg, ¹¹Jason Smith. ¹Emergency Medicine Research Group Edinburgh (EMERGE), Royal Infirmary of Edinburgh; ²Department of Cardiology, Royal Infirmary of Edinburgh; ³Emergency Medicine Research Group Edinburgh (EMERGE), Department of Emergency Medicine, Royal Infirmary of Edinburgh; ⁴Edinburgh Clinical Research Facility, Epidemiology and Statistics Core, University of Edinburgh, Western General Hospital; ⁵Royal Berkshire Hospital; ⁶DREEAM — Department of Research and Education in Emergency Medicine, Acute Medicine and Major Trauma, Nottingham University Hospitals NHS Trust; ⁷Chesterfield Royal Hospital NHS Foundation Trust; ⁸Queen Mary's University; ⁹Royal Devon and Exeter Hospital; ¹⁰Department of Emergency Medicine, Musgrove Park Hospital; ¹¹Emergency Department, University Hospitals Plymouth NHS Trust

10.1136/emermed-2019-RCEM.23

Background The IPED study showed that use of a smartphone-based event recorder (AliveCor) in ED patients presenting with palpitation or pre-syncope, increased the number of patients in whom an ECG was captured during symptoms over five-fold to more than 55% at 90 days (Reed MJ *et al.* Lancet eClinical Medicine 2019; 8: 37–46). The pocket sized AliveCor (now Kardia) mobile (AliveCor, San Francisco, USA) is a monitoring device that requires the patient to trigger the ECG recording. With minimal training, two fingers from each hand are placed on the monitor (which can be connected to the back of a smartphone) for 30 s to take an ECG recording.

This pre-planned analysis looked at the time to symptomatic rhythm detection in the intervention (AliveCorgroup)to determine the optimum AliveCor device monitoring period in the outpatient setting.

Method and results Pre-planned sub study analysis of a randomised controlled multi-centre trial. Participants ≥ 16 years old presenting to 10 UK hospital EDs with palpitation or pre-