Adaptation of ED design layout during the COVID-19 pandemic: a national cross-sectional survey

Delphine Douillet 1,2, Thomas Saloux,1 Pauline Ravon,1 François Morin,1 Thomas Moumneh,1,2 Bruno Carneiro,1 Pierre Marie Roy,1,2 Dominique Savary1,3

ABSTRACT

Background The aim was to describe the organisational changes in French EDs in response to the COVID-19 pandemic with regard to architectural constraints and compare with the recommendations of the various bodies concerning the structural adjustments to be made in this context.

Methods As part of this cross-sectional study, all heads of emergency services or their deputies were contacted to complete an electronic survey. This was a standardised online questionnaire consisting of four parts: characteristics of the responding centre, creation of the COVID-19 zone and activation of the hospital’s emergency operations plan, flow and circulation of patients and, finally, staff management. Each centre was classified according to its workload related to COVID-19 and its size (university hospital centre, high-capacity hospital centre and low-capacity hospital centre). The main endpoint was the frequency of implementation of international guidelines for ED organisation.

Results Between 11 May and 20 June 2020, 57 French EDs completed the online questionnaire and were included in the analysis. Twenty-eight EDs were able to separate patient flows into two zones: high and low viral density (n=28/57, 49.1%). Of the centres included, 52.6% set up a specific triage area for patients with suspected COVID-19 (n=30/57). Whereas, in 15 of the EDs (26.3%), the architecture made it impossible to increase the surface area of the ED.

Conclusion All EDs have adapted, but many of the changes recommended for the organisation of ED could not be implemented. ED architecture constrains adaptive capacities in the context of COVID-19.

INTRODUCTION

The emergence and rapid spread of the SARS-CoV-2 virus has forced EDs to adapt in different ways.1 Of the many necessary adjustments, structural adaptation and spatial organisation were among the most important to implement. Prior to the pandemic, the design for EDs focused more on sorting patients according to their acuity and on managing the flow of patients, rather than on ensuring they are isolated in each sector and protected from each other.2 Furthermore, hospital systems were designed for average patient loads, not for the sharp increases seen in recent years, and even less for an epidemic.3 Many emergency services are outdated and need to be at least renovated if not completely redesigned.4

There are about 650 EDs in France. They are all designed on the same model globally. First, arriving patients are placed in a triage room with triage nurses and a supervising physician. Then, depending on their acuity, patients are directed to the resuscitation room, the severe care department or the ambulatory care department.

As the pandemic progressed, in France and elsewhere, measures had to be put in place to avoid nosocomial contamination due to existing issues with poor infection control, poor flow design, physical congestion of patients, inadequate protection of staff and care in the corridors.5 Emergency medicine societies in the USA, UK, France and Australia issued guidelines for the physical adjustments of emergency services in the event of an exceptional health situation or specifically for COVID-19 (figure 1).6-9

These adjustments had to be made within the constraints imposed by the existing ED architecture and often required modifying or increasing the surface area of services. We hypothesised that many EDs were not in a position to implement the guidelines of the different academic bodies due to their existing design. Our objective was to assess the capacity to implement the recommendations and measure the current response in French EDs to cope with COVID-19.
METHODS

Design
This study was a cross-sectional survey conducted between 11 May and 20 June 2020.

Settings and participants
An electronic survey was sent to the heads of EDs or their deputies by email (n=435). The hospitals were selected using real-time national open data based on their total caseload. We divided all French regions into terciles based on the caseload of their EDs, and the hospitals were assessed according to their type (ie, university hospital centre, high-capacity hospital centre >40,000 patients per year and low-capacity hospital centre <40,000 patients per year). For each of the three caseload levels, a minimum threshold was set a priori in order to obtain a large representative panel.

The survey was constructed in reference to the guidelines that were derived from the seven common recommendations of French Society of Emergency Medicine, American College of Emergency Physicians, Royal College of Emergency Medicine and Australian College for Emergency Medicine. The questionnaire had three main sections: the characteristics of the centre including number of patient admissions per month from February to May 2020 (12 questions), the creation of the COVID-19 zone and the activation of the hospital emergency operations plan (20 questions) and the flow and circulation of patients (22 questions) (see online supplemental appendix 1). The questionnaire was pretested on a sample of emergency physicians before rolling out. The email sent to the heads or deputy heads of the EDs contained a link to the self-administered online questionnaire. A reminder was sent after 15 days. This was an open survey, and in order to avoid multiple entries, a comparison of the participants’ EDs was made, and only one answer per centre was accepted. In cases of discrepancy, a new questionnaire was requested from the centre.

Patient and public involvement
No patient involved.

Statistical analyses
Continuous variables were summarised as means and SD, or median values with IQRs, while categorical variables were reported as numbers and percentages. The percentage of each guideline’s implementation was analysed separately for each of the seven directives. Categorical variables were compared using the Fisher’s exact test. All data were analysed using R software (R Core Team, 2014, R: a language and environment for statistics computing, R Foundation for Statistical Computing, Vienna, Austria).

Ethical considerations
The ED Clinical Research Team of the CHU Angers coordinated the survey, in accordance with the principles of the Declaration of Helsinki and the Good Clinical Practice guidelines. Consent for participation was not applicable. The Checklist for Reporting Results of internet E-Surveys was followed.

RESULTS
Of 435 EDS invited, 57 French EDs completed the online questionnaire and were included in the analysis (for a participation rate of 13.1%). Those that responded included 14 EDs in university hospital centres (n=14/57, 24.6%), 15 EDs in high-capacity hospital centres (n=15/57, 26.3%) and 28 EDs in low-capacity hospital centres (28/57, 49.1%) distributed throughout metropolitan and overseas France (figure 2). The characteristics of the different hospital centres are summarised in table 1.

Evolution of organisation over time
The average number of monthly admissions to EDs during 2019 for all French services was around 3250 (±1905) patients per month. The trend was similar at the beginning of 2020 before a significant decline (around 30%) in ED visits began in February and reached a nadir in March and April. At the same time, the number of ED visits for suspected COVID-19 infection rapidly increased, reaching a plateau from March 2020 onwards, then declined from May 2020 onwards at the end of the lockdown. Hospital and government decisions were taken simultaneously (creation of high viral density zone, activation of the hospital emergency’s plan and obligation for everyone to wear the
For emergencies, the services that did not increase the size of their patient care areas increased the number of rapid transfers to other services (Table 3). In 45.6% of EDs (n=26/57), an auxiliary circuit was planned for in case of overcrowding of the emergency services. Among these, 73% placed this auxiliary circuit in the ED. Out of the 57 centres, 22 set up subsidiary COVID-19 medical centres outside the EDs, with general practitioners for consultations during the day (38.6%) to see patients with symptoms of COVID-19 but without severe signs. For patient arrival, 52.6% of the EDs set up two separate areas for patients suspected of having COVID-19 or not (n=30/57). The triage area differed depending on the centre. Only 26% of the services kept the pre-existing area with a separation (n=15/57). For the rest of the centres, triage was set up upstream of the EDs before referral to the different zones: in outdoor tents, direct assessments in the ambulance or rarely outdoors.

In 84% of cases, the patient waiting area comprised two separate locations (n=48/57). Five centres made arrangements involving the creation of a hermetic barrier (tarpaulin, wall and partition), and one centre used the same room with a removable barrier as the only protection. For the majority of centres (82%, n=47/57), patients were then directed to different areas depending on their severity. For seriously afflicted patients, 95% of the centres were equipped with a resuscitation room, and among them 81% had one or more resuscitation rooms dedicated to patients with suspected COVID-19.

For patient requiring continuous vital sign monitoring, 79% of the centres (n=45/57) created a monitoring area in each zone (ie, low and high viral density). Nine centres (15.8%) could not physically separate their monitoring zone within the ED. Seventy per cent of the EDs maintained (n=40/57) short-term hospitalisation areas in the ED. Radiography and CT scan rooms dedicated to patients with COVID-19 were set up in 49.1% (n=28/57) and 52.6% (n=30/57) of the EDs, respectively.

Implementation of international guidelines

Twenty-eight EDs implemented a separation of patient flows into two zones: high viral density and low viral density (n=28/57, 49.1%). Mask wearing for patients with suspected COVID-19 (84.2%) and signage of areas of high epidemic density within the EDs (93.0%) were the most respected measures. A specific triage area for patients with suspected COVID-19 was set up in 52.6%. The individualisation of specific healthcare sectors, such as traumatology, under the responsibility of other specialties, was established in 27 hospitals (47%). The specialities concerned were mainly surgery, cardiology and psychiatry. Low-capacity hospital centres had the lowest rate of compliance with guidelines (56.1%) (Table 2).

Architectural adjustments

The architecture of 15 of the EDs surveyed (26.3%) prevented any increase in their space to accommodate additional patients. Of those that were able to increase their space, 16.7% (n=7/42) used an existing, non-clinical part of the ED (waiting room, transfer area, etc), 16.7% (n=7/42) used an extension in the building that had already been anticipated for use by the ED, 78.6% (n=33/42) used a space not initially allocated to the ED and 52.4% (n=22/42) set up a tent outside the ED and, for the most part, upstream and at the entrance. Several services combined these different types of resources to increase the space for emergencies. The services that did not increase the size of

<table>
<thead>
<tr>
<th>Kind of ED</th>
<th>Total of centres n=57 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults only</td>
<td>23 (41.1)</td>
</tr>
<tr>
<td>Adults and children</td>
<td>34 (59.6)</td>
</tr>
<tr>
<td>Number of admissions to the ED in 2019, median (IQR)</td>
<td>39 000 (25 223–57 675)</td>
</tr>
<tr>
<td>University hospital centre</td>
<td>60 233 (51 039–88 500)</td>
</tr>
<tr>
<td>High-capacity hospital centre</td>
<td>47 919 (43 000–57 115)</td>
</tr>
<tr>
<td>Low-capacity hospital centre</td>
<td>25 541 (20 031–31 690)</td>
</tr>
<tr>
<td>High caseload level*</td>
<td>21 (36.8)</td>
</tr>
<tr>
<td>University hospital centre</td>
<td>5 (8.8)</td>
</tr>
<tr>
<td>High-capacity hospital centre</td>
<td>6 (10.5)</td>
</tr>
<tr>
<td>Low-capacity hospital centre</td>
<td>10 (17.5)</td>
</tr>
<tr>
<td>Moderate caseload level*</td>
<td>18 (31.6)</td>
</tr>
<tr>
<td>University hospital centre</td>
<td>5 (8.8)</td>
</tr>
<tr>
<td>High-capacity hospital centre</td>
<td>5 (8.8)</td>
</tr>
<tr>
<td>Low-capacity hospital centre</td>
<td>8 (14.0)</td>
</tr>
<tr>
<td>Low caseload level*</td>
<td>18 (31.6)</td>
</tr>
<tr>
<td>University hospital centre</td>
<td>5 (8.8)</td>
</tr>
<tr>
<td>High-capacity hospital centre</td>
<td>4 (7.0)</td>
</tr>
<tr>
<td>Low-capacity hospital centre</td>
<td>9 (15.8)</td>
</tr>
<tr>
<td>Existence of resuscitation rooms/acute care rooms</td>
<td>54 (94.7)</td>
</tr>
<tr>
<td>Existence of resuscitation rooms dedicated to patients with COVID-19</td>
<td>46 (80.7)</td>
</tr>
</tbody>
</table>

*According to the occupancy rate in intensive care units.

FIGURE 2 Distribution of responding centres.
49% of the French EDs were not able to implement the main recommendation of introducing separate flows with regard to viral density levels, and almost a third of the EDs possess an unsuitable architecture limiting their ability to increase patient care space. These limitations in the ability to adapt were seen in both low-capacity hospitals and university hospitals.

The main explanation for not implementing these guidelines is likely to be a too strong architectural constraint. In a previous study of the preparedness among French EDs, more than a third declared their treatment space and numbers of rooms were inadequate and said that their structures would not allow them to create separate circuits for patients with COVID-19. In this study, the two recommendations most frequently followed were signage and the wearing of masks. This did not require any structural adjustments.

Despite the presence of architectural constraints in many departments, this study reveals the great diversity of the solutions put in place for dealing with existing constraints and a high infectious disease. Approximately one-quarter of EDs were not able to increase their care space. However, they addressed this by promoting rapid transfers to buffer areas outside the ED or to inpatient units. Among those who were able to increase their space, three-quarters used a space that had not been intended to be used as an ED and half set up a tent outside the ED. This study shows the creativity and resilience of caregivers in the face of architectural constraints. These adaptations took place in the context of an overall decrease in ED visits worldwide, estimated at around 30% in this study. This has undoubtedly made things easier but will not necessarily be reproducible if new COVID-19 waves arrive.

<p>| Original research |</p>
<table>
<thead>
<tr>
<th>Guidelines</th>
<th>Total centres, n=57 (%)</th>
<th>University hospital centre, n=14 (%)</th>
<th>High-capacity hospital centre, n=15 (%)</th>
<th>Low-capacity hospital centre, n=28 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Flow separation</td>
<td>28 (49.1)</td>
<td>7 (50.0)</td>
<td>9 (60.0)</td>
<td>12 (42.9)</td>
</tr>
<tr>
<td>2. Face covering mask</td>
<td>48 (84.2)</td>
<td>12 (85.7)</td>
<td>13 (86.7)</td>
<td>23 (82.1)</td>
</tr>
<tr>
<td>3. Specific triage area</td>
<td>30 (52.6)</td>
<td>8 (57.1)</td>
<td>11 (73.3)</td>
<td>11 (39.3)</td>
</tr>
<tr>
<td>4. Signage of high viral density areas</td>
<td>53 (93.0)</td>
<td>13 (92.9)</td>
<td>15 (100)</td>
<td>25 (89.3)</td>
</tr>
<tr>
<td>5. Specific sectors</td>
<td>27 (47.4)</td>
<td>9 (64.3)</td>
<td>8 (53.3)</td>
<td>10 (35.7)</td>
</tr>
<tr>
<td>6. Rapid transfers</td>
<td>39 (68.4)</td>
<td>10 (71.4)</td>
<td>13 (86.7)</td>
<td>16 (57.1)</td>
</tr>
<tr>
<td>7. Isolated route‡</td>
<td>29 (53.7)</td>
<td>9 (64.3)</td>
<td>7 (46.7)</td>
<td>13 (46.4)</td>
</tr>
</tbody>
</table>

*Definitions for each guideline can be found in the Introduction.
†Difference between university hospital centre and low-capacity hospital centre.
‡EDs do not have an intensive care unit.

Implementation of guidelines is a complex process that is influenced by different factors, related to both the evidence and feasibility of the guidelines themselves and to the social, organisational, economic and political context. However, the guidelines could only be completed followed half of the EDs. These types of difficulties were also reported in Singapore. A Swiss narrative review emphasises the importance of early identification of possible upstream outreach spaces to expand critical care and emergency services. Our EDs are no longer suited to the contemporary constraints of increasing patient flows and the predominant risk of infection. Future innovations in the layout of emergency rooms must be made with due thought for these major issues.

So how should future EDs be designed? In the aftermath of the outbreak of this pandemic of COVID-19, bringing together architects, administrators, health caregivers and patients in order to take into account all the new constraints will make it possible to build the future of ED design.

Limitations
This study has some limitations. First, this survey provides a snapshot of the changes in France and may not reflect permanent adaptations of the EDs. Second, the questionnaire included many questions, which may have limited participation. Third, we have not invested whether the change made has impacted on the flow for non-COVID-19 patients.

To conclude, all the hospitals introduced changes, but only half were able to institute the recommended flow measures requiring design changes. The architecture of tomorrow’s EDs will have to take these difficulties into account to prepare for the next pandemic.

Table 2 Implementation of the guidelines in the different centres

<table>
<thead>
<tr>
<th>Guidelines*</th>
<th>Total centres, n=57 (%)</th>
<th>University hospital centre, n=14 (%)</th>
<th>High-capacity hospital centre, n=15 (%)</th>
<th>Low-capacity hospital centre, n=28 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Flow separation</td>
<td>28 (49.1)</td>
<td>7 (50.0)</td>
<td>9 (60.0)</td>
<td>12 (42.9)</td>
</tr>
<tr>
<td>2. Face covering mask</td>
<td>48 (84.2)</td>
<td>12 (85.7)</td>
<td>13 (86.7)</td>
<td>23 (82.1)</td>
</tr>
<tr>
<td>3. Specific triage area</td>
<td>30 (52.6)</td>
<td>8 (57.1)</td>
<td>11 (73.3)</td>
<td>11 (39.3)</td>
</tr>
<tr>
<td>4. Signage of high viral density areas</td>
<td>53 (93.0)</td>
<td>13 (92.9)</td>
<td>15 (100)</td>
<td>25 (89.3)</td>
</tr>
<tr>
<td>5. Specific sectors</td>
<td>27 (47.4)</td>
<td>9 (64.3)</td>
<td>8 (53.3)</td>
<td>10 (35.7)</td>
</tr>
<tr>
<td>6. Rapid transfers</td>
<td>39 (68.4)</td>
<td>10 (71.4)</td>
<td>13 (86.7)</td>
<td>16 (57.1)</td>
</tr>
<tr>
<td>7. Isolated route‡</td>
<td>29 (53.7)</td>
<td>9 (64.3)</td>
<td>7 (46.7)</td>
<td>13 (46.4)</td>
</tr>
</tbody>
</table>

*Definitions for each guideline can be found in the Introduction.
†Difference between university hospital centre and low-capacity hospital centre.
‡EDs do not have an intensive care unit.
REFERENCES

Appendix 1. Questionnaire

EVALUATION OF ARCHITECTURAL EMERGENCY STRUCTURES IN THE CONTEXT OF THE 2019-nCOV PANDEMIC

Hospital Centre Name ……
E-mail ………………………………………………………

General information on emergency structures

Q.1 Type of emergency department: □ Adult □ Adult and Paediatric
Q.2 Number of beds available in the traumatology emergency department:
Q.3 Number of beds available in the medical emergency department:
Q.4 ED visits in 2019 ...
Q.5 ED visits in February ...
Q.6 ED visits in March ...
Q.7 ED visits in April ...
Q.8 ED visits in May ...
Q.9 COVID Daily Emergency Visits in February ...
Q.10 COVID Daily Emergency Visits in March...........................
Q.11 COVID Daily Emergency Visits in April...........................
Q.12 COVID Daily Emergency Visits in May ...

COVID Zone Creation-White Plan

Q.13 Creation of a Covid Zone □ Yes □ No
Q.14 Date of the creation of the COVID zone: .../.../2020
Q.15 Date of start of white plan: .../.../2020
Q.16 Triggers for emergency restructuring:
□ Number of cases in France
□ Number of cases in the region
□ Number of local cases
□ Other:
Q.17 Mandatory mask-wearing
- Suspected COVID patients only □ Yes □ No
- Any patient presenting at the ED □ Yes □ No
Q.18 If mask wearing is mandatory, on what date did this start? .../.../2020
Q.19 At the highest level of pressure, estimate the percentage (%) of area used for suspected COVID patients:
Q.20 At the highest level of pressure, estimate the percentage (%) of area used for non-suspected COVID patients:
Q.21 Has there been an increase in the emergency area, if yes by what means?
□ Installation of an outdoor tent type NRBC
□ Extension in the emergency building already anticipated
□ Use of a space not initially dedicated to emergencies
□ Other
Q.22 If Yes, estimated percentage increase in area
Q.23 In the event of emergency capacity being exceeded, has another COVID19 circuit been planned? □ Yes □ No
Q.24 If yes:
□ It is located within the ED
□ It is located outside the ED
□ This circuit had to be activated during the pandemic
Q. 25 Have one or more channels been created by one or more other specialties for patients not suspected of COVID19?
❑ Yes ❑ No
Q. 26 If yes, specify the sector concerned (trauma, urology, etc.) and who supervises the sector (emergency physician, surgeon, etc.): ...
Q. 27 Were one or more medical centres created or affiliated for COVID19 General Medicine consultations during the day? ❑ Yes ❑ No
Q. 28 How many major restructuring changes were made to your department and which were the major ones for you? ...
Q. 29 Do you make an administrative record on SIVIC in emergencies? ❑ Yes ❑ No
Q. 30 Has the end of the COVID/Non-COVID distinction been defined? ❑ Yes ❑ No
Q. 31 If yes, what date - - / - - / - - - -
Reception/Flow/Circulations
Q. 32 Concerning access of families to the different areas, have you decided on:
❑ No family visit, telephone contact only; no family visit, telephone or videoconference contact possible
❑ Visit possible: only one companion if severity criterion is met
❑ Decision on a case-by-case basis
❑ Other:
Q. 33 Are there two separate triage areas for suspected COVID19 and non-suspected patients? ❑ Yes ❑ No
Q. 34 Location of the triage area for COVID19 patients?
❑ Pre-existing reception separated into two
❑ Outdoor tent adjacent to emergencies
❑ Other structure already in place but with another function (administrative offices, waiting room...)
❑ Other
Q. 35 Does the Patient Triage Area have a coordinating and regulating doctor (MAO) for emergencies?
❑ There is no coordinating and regulating doctor for emergencies
❑ Already in place prior to the pandemic
❑ Put in place after the pandemic began
❑ Dedicated to suspected COVID Patients
Q. 36 Are patients with low resource consumption (lack of additional examination, lack of hospitalization criteria) redirected by the IOA or the MAO to an outpatient unit? ❑ Yes ❑ No
Q. 37 Are patients directed to different areas based on severity, even for non-COVID19 patients (e.g., Fast track, valid, recumbent, emergency room)?
❑ Yes
❑ No
❑ Only for non COVID19 patients
❑ Only for COVID19 patients
Q. 38 In the ED waiting room, COVID and non COVID patients are:
❑ In two different locations
❑ Separated by a physical barrier (wall, tarpaulin...)
❑ Separated virtually or by a non-airtight barrier
❑ Not separated
Q. 39 What means are used to separate the COVID zone?
❑ Walls already in place sufficient for delimitation
❑ Addition of hermetic barriers to isolate the area
❑ Other
Q. 40 Presence of an emergency room for life-threatening conditions: ☐ Yes ☐ No

Q. 41 Is there an emergency room for life-threatening conditions dedicated solely to suspected COVID patients?
☐ Yes ☐ No

Q. 42 If yes, number of ER beds for patients suspected of COVID? …………………………………………………….

Q. 43 Is there a dedicated X-ray location for suspected COVID19 patients? ☐ Yes ☐ No

Q. 44 Is there a location reserved for scanning suspected COVID19 patients? ☐ Yes ☐ No

Q. 45 Is there signage to limit circulation in the area of high viral density, present from reception?
☐ Yes ☐ No

Q. 46 Is the route between the emergency department and the critical care services safe? (No cross-flow in particular) ☐ Yes ☐ No

Q. 47 Is the circulation of suspected COVID19 patients completely separated from the entry to exit of non-COVID patients? ☐ Yes ☐ No

Q. 48 Is the circulation in the service separated from any other flow that is unrelated to their activity (personnel external to the service, intra-hospital patient transfers, logistics and supply flow, etc.)?
☐ Yes ☐ No

Q. 49 Are the corridors wide enough in each area to allow two stretchers to pass each other (> 2m)? ☐ Yes ☐ No

Q. 50 Is there a monitoring area?
☐ In the COVID sector
☐ In the non-COVID sector
☐ It is the same monitoring area separated virtually
☐ It is the same monitoring area separated physically
☐ Patients are separated by curtains or walls

Q. 51 Is there a buffer zone before transfer to a service or exit?
☐ Yes ☐ No

Q. 52 Is there a short stay hospitalisation unit still active? ☐ Yes ☐ No

Q. 53 If Yes:
☐ Only for COVID
☐ Only for non COVID
☐ For both, it has been separated
☐ These are single rooms
☐ There are several patients per room
☐ Other………………

Human Resources Management:

Q. 54 Did you recruit additional medical staff? ☐ Yes ☐ No

Q. 55 If so, how many more people per 24 hours?

Q. 56 Was the organization the same during the day and night? ☐ Yes ☐ No

Q. 57 Did you involve external doctors in your emergency department? ☐ Yes ☐ No

Q. 58 If yes, from what specialty/ies: ……………………………

Q. 59 Did you involve firefighters in your emergency department? ☐ Yes ☐ No

Q. 60 Did you involve volunteer first aiders in your emergency department? ☐ Yes ☐ No

Q. 61 Do medical personnel work exclusively in COVID or non-COVID? ☐ Yes ☐ No
Q. 62 Do paramedics work exclusively in COVID or non-COVID? □ Yes □ No
Q. 63 Can Caregivers switch between sectors depending on the flow? □ Yes □ No