Repository across all age groups, with an infant defined as <1 year.

We estimated the change in frequency of ED presentations by age group and diagnosis before and after the SARS-CoV-2 pandemic began in England. We compared changes in the frequency of attendances of IFP by infant age, sex, ethnicity, deprivation, rurality, arrival mode, arrival time, acuity, mother’s age, gravidity and mental health, birth length of stay, attendance duration and disposal (admission or discharge). IFA was classified as feeding problems, neonatal jaundice and gastro-oesophageal reflux.

Results and Conclusion: Whilst total ED attendances fell by 16.7% (95% CI -16.8% to -16.6%), infant attendances increased for feeding problems (+7.5% 95% CI 2.3% to 13.0%), neonatal jaundice (+12.8%, 95% CI 3.3% to 23.3%) and gastro-oesophageal reflux (+9.7%, 95% CI 4.4% to 15.2%). These increases were more pronounced amongst first babies (+22.4%, 95% CI 13.1% to 32.5%) and brief hospital stay after birth (0–1 days, +20.1%, 95% CI 14.8% to 25.7%). Our analysis suggests many of these attendances were low acuity. Taken together, IFA presentations (figure 1) increased by 8.9% (95% CI 5.4% to 12.5%) in 2020–21.

ED attendances reduced dramatically and systematically with the COVID-19 pandemic, but infant feeding-related attendances increased. This implies growth in the unmet needs of infants and identifies future target groups for health policy.

Abstract 1338 Figure 1

Aims, Objectives and Background: Corticosteroids can be used to treat idiopathic facial paralysis (Bell’s palsy) in children, but their effectiveness is uncertain.

Aims: To determine if prednisolone improves recovery of children with Bell’s palsy at one month.

Method and Design: Double-blind, placebo-controlled, randomised, trial of prednisolone in children presenting to ED with Bell’s palsy. Patients 6 months to <18 years, recruited <72 hours after symptom onset, were randomly assigned to receive 10 days of treatment with oral prednisolone (1 mg/kg) or placebo. The primary outcome: complete recovery of facial function at 1 month on the House-Brackmann scale. Secondary outcomes: facial function, adverse events and pain at 6 months.

Results and Conclusion: Between October 2015 to August 2020, 187 children were randomised (94 to prednisolone and 93 to placebo) and included in the intention-to-treat analysis. At 1 month, the proportions of patients who had recovered facial function were 49% (n=43/87) in the prednisolone group compared with 57% (n=50/87) in the placebo group (risk difference -8.1%, 95% CI -22.8 to 6.7; adjusted odds ratio [aOR] 0.7, 95% CI 0.4 to 1.3). At 6 months these proportion were 99% (n=77/78) for prednisolone and 93% (n=76/82) for placebo respectively (risk difference 6.0%, 95% CI 0.1 to 12.2; aOR 3.0 95% CI 0.5 to 17.7) (figure 1). There were no serious adverse events and little evidence for group differences in secondary outcomes.

Abstract 1396 Figure 1

In children with Bell’s palsy the vast majority recover without treatment. The study does not provide evidence that early treatment with prednisolone improves complete recovery.

REFERENCES: