TEG’s in the assessment of TBI associated coagulopathy remains unclear.

Abstract 1754

A THEMATIC ANALYSIS OF TWITTER POSTS PRE AND POST-PUBLICATION OF CRASH-3 TRIAL RESULTS USING BLOOM’S DIGITAL TAXONOMY. EXAMINING HOW SOCIAL MEDIA THEORIES IMPACT KNOWLEDGE TRANSLATION

Sukhbir Singh Bhullar, Khaleel Ahmed. Royal Blackburn Teaching Hospital

10.1136/ememmed-2022-RCEM2.37

Aims, Objectives and Background The purpose of this study is to unpack the cognitive dimensions of learning and the subjective internalisation that resulted from Twitter activity by investigating the following research questions: 1) What types of information were shared on Twitter pre and post-publication of the CRASH-3 trial? and 2) Did this information signify knowledge translation? This topic is important because translation of medical research into medical practice can take up to 20 years and Twitter-aided knowledge translation has the potential to shorten this. This study is the first to analyse tweets thematically through two methods, including Bloom’s Digital Taxonomy (BDT), bringing the realities of Twitter users to the forefront.

Method and Design Pre-publication tweets (n=92) and post-publication tweets (n=742) were analysed using 1) Braun & Clarke’s six-step thematic analysis framework and 2) BDT. The highest-order thinking skill (HOTS), during BDT analysis, was assigned following a consensus meeting between two independent coders.

Results and Conclusion Eight overarching themes emerging from the pre-publication phase: emotion and feeling (90.21%), hashtagging (40.21%), tagging (26.09%), education-related information (10.87%), conference (7.61%), state ment (3.26%) and poll (2.17%). 16 overarching themes emerged from the post-publication phase: hashtagging (56.06%), tagging (36.79%), article posting (23.05%), emotion and feeling (21.83%), education-related information (19.54%), summarising (14.42%), notification of results (9.57%), media outlook (7.01%), conference (6.74%), commenting (6.06%), open questions (5.26%), judging (4.99%), research-related information (4.04%), recommending (1.75%), quoting (1.48%) and comparing trials (0.40%). Some tweets applied to more than one category of themes.

There was an increase in HOTS during the post-publication phase, signifying an increase in the cognitive dimensions of learning and the subjective internalisation of information. This was likely due to the increase in social media activity and information sharing following the release of trial outcomes. These findings support the role of Twitter, through the social capital model, in facilitating higher-order learning.

Abstract 1683

CLINICAL IMPACT OF A NOVEL AMBULATORY COMPUTED TOMOGRAPHY CORONARY ANGIOGRAPHY PATHWAY FOR PATIENTS AT A MODERATE RISK OF SUSPECTED ACUTE CORONARY SYNDROMES

Verity Buglass. University of Manchester

10.1136/ememmed-2022-RCEM2.38

Aims, Objectives and Background We implemented a novel ambulatory computed tomography coronary angiography (CTCA) pathway as an alternative to inpatient stay when resolving uncertainty surrounding acute coronary syndrome diagnosis in ‘moderate risk’ patients. Eligible patients were identified automatically, and recommendations ‘pushed’ to the clinician. This novel pathway aimed to reduce the length of stay and pressure on hospital resources. We investigated the uptake of this service and its effects on patient outcomes including length of stay and the use of percutaneous coronary intervention (PCI).

Method and Design We conducted a retrospective, single-centre service evaluation. Patients were eligible for CTCA if they were moderate risk with T-MACS; troponin <99th percentile; no acute electrocardiogram ischaemia.

Data were collected contemporaneously using the T-MACS app as part of routine clinical care for consecutive moderate-risk patients pre- (June 2016 – December 2018) and post-implementation (January 2018 – October 2020) of ambulatory CTCA. The primary outcome was adherence...
Aims, Objectives and Background Noise is a contributing factor to miscommunication, which may be exacerbated by wearing personal protective equipment. There has been little research on noise in the Emergency Department (ED).

We aimed to (1) identify the noise levels experienced by staff and patients in different areas of an emergency department over the 24-hour cycle, (2) examine the impact of cubicle doors on the background noise experienced by the patient, and (3) assess the impact of monitor alarms on staff and patient noise levels.

Method and Design Using a standardised protocol, an observational study monitoring of staff and patient experience of noise was carried out in 3 areas of the ED (a resuscitation room, an area of patient cubicles with curtains), and an area of patient cubicles with solid doors).

Results and Conclusion Noise levels likely to impair communication are present in the ED for most of the time. Staff awareness and improved design of both buildings and equipment might mitigate this negative acoustic environment.

Abstract 1559

<table>
<thead>
<tr>
<th>Area</th>
<th>Overall noise level (dB)</th>
<th>Proportion of time >45dB (raised voice)</th>
<th>Proportion of time >65dB (shouting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Patient Cubicle</td>
<td>45 (41 – 51)</td>
<td>51%</td>
<td>2%</td>
</tr>
<tr>
<td>Red Patient Cubicle</td>
<td>41 (37 – 47)</td>
<td>30%</td>
<td>2%</td>
</tr>
<tr>
<td>ER Patient Cubicle</td>
<td>50 (49 – 54)</td>
<td>100%</td>
<td>6%</td>
</tr>
<tr>
<td>Blue Staff Desk</td>
<td>53 (48 – 58)</td>
<td>88%</td>
<td>7%</td>
</tr>
<tr>
<td>Red Staff Desk</td>
<td>55 (51 – 60)</td>
<td>96%</td>
<td>7%</td>
</tr>
<tr>
<td>ER Staff Desk</td>
<td>50 (45 – 56)</td>
<td>76%</td>
<td>5%</td>
</tr>
</tbody>
</table>

The overall distributions of noise levels in each area were described and circadian variation plotted. The proportion of time that background noise was above key cutoff values (45dB and 65dB) was much louder for patients than for staff.

Results and Conclusion In a large urban teaching hospital Emergency Department noise was greater than 45dB for staff between 76% and 96% of the time (30% to 100% for patients). There was little difference across the 24hr cycle. A door decreased the noise experienced by patients, but only if left closed. In the resuscitation rooms monitor alarms were much louder for patients than for staff.

Noise levels likely to impair communication are present in the ED for most of the time. Staff awareness and improved design of both buildings and equipment might mitigate this negative acoustic environment.